Nucleons and parity doubling across the deconfinement transition

Chris Allton

Swansea University, U.K.

Lattice 2015, Kobe, July 2015

arXiv:1502.03603

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

FASTSUM Collaboration

Gert Aarts¹, CRA¹, Alessandro Amato^{1,2}, Davide de Boni¹, Wynne Evans^{1,3}, Pietro Giudice⁴, Simon Hands¹, Benjamin Jäger¹, Aoife Kelly⁵, Seyong Kim⁶, Maria-Paola Lombardo⁷, Dhagash Mehta⁸, Bugra Oktay⁹, Chrisanthi Praki¹, Sinead Ryan¹⁰, Jon-Ivar Skullerud⁵, Tim Harris^{10,11}

- ¹ Swansea University
- ² University of Helsinki
- ³ University of Bern
- ⁴ Münster University
- ⁵ Maynooth University
- ⁶ Sejong University
- ⁷ Frascati, INFN
- ⁸ North Carolina State University

(ロ) (同) (三) (三) (三) (○) (○)

- ⁹ University of Utah
- ¹⁰ Trinity College Dublin
- ¹¹ University of Mainz

Setting the scene

- anisotropic lattices $a_{\tau} < a_s$
 - ► allowing better resolution, particularly at finite temperatures (since $T = (N_{\tau}a_{\tau})^{-1}$)

- "2nd" generation lattice ensembles
 - moving towards continuum, infinite volume, realistic light quark masses

(ロ) (同) (三) (三) (三) (○) (○)

Physics/lattice parameters

2nd Generation

2+1 flavours

larger volume: $(3\text{fm})^3 - (4\text{fm})^3$ finer lattices: $a_s = 0.123$ fm quark mass: $M_{\pi}/M_{\rho} \sim 0.45$ temporal cut-off: $a_{\tau} \sim 5.6$ GeV

Gauge Action:

Symanzik-improved, tree-level tadpole Fermion Action:

clover, stout-links, tree-level tadpole

Ns	$N_{ au}$ $T(MeV)$		T/T_c
24, 32	16	352	1.90
24	20	281	1.52
24, 32	24	235	1.27
24, 32	28	201	1.09
24, 32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

(Hadron Spectrum Collaboration)

Previous Physics Results

 Bottomonium and Charmonium Spectral Functions

Charmonium Potential

 Conductivity, Susceptibility and Diffusion Coefficient

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Baryons at Finite Temperature

- little work on Baryons @ $T \neq 0$
 - DeTar and Kogut (1987) screening masses
 - QCD-TARO (2005) $\mu \neq \mathbf{0}$
 - Datta et al (2013) quenched

We use a standard baryon operator:

$$O_{N}(\mathbf{x},\tau) = \epsilon_{abc} u_{a}(\mathbf{x},\tau) \left[u_{b}^{T}(\mathbf{x},\tau) \mathcal{C} \gamma_{5} d_{c}(\mathbf{x},\tau) \right]$$

and parity project it:

$$\mathcal{O}_{\mathsf{N}_{\pm}}(\mathbf{x},\tau) = \mathcal{P}_{\pm}\mathcal{O}_{\mathsf{N}_{\pm}}(\mathbf{x},\tau)$$

Forward (+ve) and backward (-ve) parity states in correlator [Praki's talk]:

$$\begin{aligned} G_{+}(\tau) &= \int d^{3}x \left\langle \mathcal{O}_{N_{+}}(\mathbf{x},\tau) \overline{\mathcal{O}}_{N_{+}}(\mathbf{0},0) \right\rangle \\ &= \int_{0}^{\infty} \frac{d\omega}{2\pi} \left[\frac{e^{-\omega\tau}}{1+e^{-\omega/T}} \rho_{+}(\omega) - \frac{e^{-\omega(1/T-\tau)}}{1+e^{-\omega/T}} \rho_{-}(\omega) \right] \end{aligned}$$

・ロト・西ト・ヨト・ヨー シタぐ

Baryon Correlators

(Using Gaussian smeared baryon operators)

Baryon Correlators

(Using Gaussian smeared baryon operators)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Baryon Correlators

(Using Gaussian smeared baryon operators)

 \rightarrow parity doubling for $T \gtrsim T_C$ observed at correlator level

Correlators - Parity Comparison

Experiment:

+ve parity: $M_N = 939 \text{ MeV}$ -ve parity: $M_{N*} = 1535 \text{ MeV}$

Correlators - Parity Comparison

Experiment:

+ve parity: $M_N = 939 \text{ MeV}$ -ve parity: $M_{N*} = 1535 \text{ MeV}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Naive Exponential Fits

T/T_c	<i>m</i> ₊ [GeV]	<i>m_</i> [GeV]	<i>m</i> +	– <i>m</i> _ [MeV]
0.24 0.76 0.84 0.95	1.20(3) 1.18(9) 1.08(9) 1.12(14)	1.9(3) 1.6(2) 1.6(1) 1.3(2)	~700	<i>cf</i> expt: ∼600

Parity Comparison

Define
$$R(t) = \frac{G(\tau) - G(N_{\tau} - \tau)}{G(\tau) + G(N_{\tau} - \tau)}$$
 Datta et al, arXiv:1212.2927
Note: $R(1/2T) \equiv 0$
with: $R(\tau) \equiv 0$ for parity symmetry
1.25
0.75
0.75
0.75
0.75
0.5
 $m = \frac{1}{2}$
 $m = \frac{1}{2}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Parity Restoration

Effects of Smearing

Above results used Gaussian smearing with sources/sinks, η smeared with:

 $\eta' = C (1 + \kappa H)^n \eta$ using $\kappa = 8.7$ and n = 140 Capitani et al [arXiv:1205.0180] Systematics checks of smearing

3

vary n
 vary τ-range

Effects of Smearing

Above results used Gaussian smearing with sources/sinks, η smeared with:

 $\eta' = C (1 + \kappa H)^n \eta$ using $\kappa = 8.7$ and n = 140 Capitani et al [arXiv:1205.0180] Systematics checks of smearing:

```
    vary n
    vary τ-range
```


Effects of Smearing

Systematics checks of smearing:

- vary n
- vary τ -range

Implies parity doubling is:

- ground state feature (recall Wilson term breaks chiral symmetry) not an artefact of smearing

Maximum Entropy Method (MEM)

Cont:
$$G(\tau) = \int K(\tau, \omega) \rho(\omega) d\omega$$
 Lat: $G(\tau_i) = \sum_j K(\tau_i, \omega_j) \rho(\omega_j)$

Input data: τ_i , $i = \{1, ..., \mathcal{O}(10)\}$ Output data : ω_j , $j = \{1, ..., \mathcal{O}(10^3)\}$ \rightarrow ill-posed

Bayes Th'm: $P[\rho|DH] = \frac{P[D|\rho H]P[\rho|H]}{P[D|H]} \propto \exp(-\chi^2 + \alpha S)$

H = prior knowledge D = data

Shannon-Jaynes entropy: $S = \int_0^\infty \frac{d\omega}{2\pi} \left[\rho(\omega) - m(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)} \right]$

Competition between minimising χ^2 and maximising S

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Maximum Entropy Method (MEM)

Cont:
$$G(\tau) = \int K(\tau, \omega) \rho(\omega) d\omega$$
 Lat: $G(\tau_i) = \sum_j K(\tau_i, \omega_j) \rho(\omega_j)$

Input data: τ_i , $i = \{1, ..., \mathcal{O}(10)\}$ Output data : ω_j , $j = \{1, ..., \mathcal{O}(10^3)\}$ \longrightarrow ill-posed

Bayes Th'm:
$$P[\rho|DH] = \frac{P[D|\rho H]P[\rho|H]}{P[D|H]} \propto \exp(-\chi^2 + \alpha S)$$

H =prior knowledge D =data

Shannon-Jaynes entropy: $S = \int_0^\infty \frac{d\omega}{2\pi} \left[\rho(\omega) - m(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)} \right]$

Competition between minimising χ^2 and maximising S

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

MEM for finite *T* baryons

Recall:
$$G_{+}(\tau) = \int d^{3}x \langle O_{N_{+}}(\mathbf{x},\tau)\overline{O}_{N_{+}}(\mathbf{0},0)\rangle$$

Praki's talk: $= \int_{0}^{\infty} \frac{d\omega}{2\pi} \left[\frac{e^{-\omega\tau}}{1+e^{-\omega/T}} \rho_{+}(\omega) - \frac{e^{-\omega(1/T-\tau)}}{1+e^{-\omega/T}} \rho_{-}(\omega) \right]$

So can define:
$$K(\tau, \omega) = \frac{e^{-\omega\tau}}{1 + e^{-\omega/T}} \quad \omega > 0$$

$$= \frac{e^{+\omega(1/T-\tau)}}{1 + e^{+\omega/T}} \quad \omega < 0$$

and use MEM with
$${old G_+}(au)\equiv\int_{-\infty}^{+\infty}K(au,\omega)
ho(\omega)oldsymbol{d}\omega$$

giving:
$$\rho_+(\omega) \equiv \rho(\omega) \qquad \omega > 0$$

 $\rho_-(-\omega) \equiv -\rho(\omega) \qquad \omega < 0$

BUT need to assume $\rho(\omega)$ is positive definite for MEM to work

Preliminary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Preliminary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�()~.

Preliminary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Preliminary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Preliminary

Preliminary

・ロン ・四 と ・ ヨ と ・ ヨ と

3

ρ(ω)

Preliminary

ρ(ω)

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Preliminary

Preliminary

ω

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Baryonic Spectral Functions - Systematic Checks

Checking systematics by using MEM on fixed τ windows:

$$\tau = 1, 2, \dots, 7, N_{\tau} - 7, N_{\tau} - 6, \dots, N_{\tau} - 1$$

Preliminary

ω

Summary

Baryonic Parity Restoration:

- Signicant thermal effects in -ve parity nucleon
- No observed thermal modification of +ve parity mass below T_C
- Degeneracy in ground state of baryonic parity partners above T_c
- Finite temperature baryonic spectral functions determined

Future work:

- strange baryons
- chiral fermions
- finer lattices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Summary

Baryonic Parity Restoration:

- Signicant thermal effects in -ve parity nucleon
- No observed thermal modification of +ve parity mass below T_C
- Degeneracy in ground state of baryonic parity partners above T_c
- Finite temperature baryonic spectral functions determined

Future work:

- strange baryons
- chiral fermions
- finer lattices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Physics/lattice parameters

2nd Generation

2+1 flavours larger volume: $(3\text{fm})^3 - (4\text{fm})^3$ finer lattices: $a_s = 0.123 \text{ fm}$ quark mass: $M_{\pi}/M_{\rho} \sim 0.45$ temporal cut-off: $a_{\tau} \sim 5.6 \text{ GeV}$

3rd Generation

A I

2+1 flavours larger volume: $(3\text{fm})^3 - (4\text{fm})^3$ finer lattices: $a_s = 0.123 \text{ fm}$ quark mass: $M_\pi/M_\rho \sim 0.45$ temporal cut-off: $a_\tau \sim 11.2 \text{ GeV}$

Ns	$N_{ au}$	T(MeV)	T/T_c		
				-	
24, 32	16	352	1.90		2
24	20	281	1.52		
24, 32	24	235	1.27		2
24, 32	28	201	1.09		2
24, 32	32	176	0.95		2
24	36	156	0.84		
24	40	141	0.76		
32	48	117	0.63		
16	128	44	0.24		

IN_S	IN_{T}	(iviev)	I / I c
24, 32	32	352	1.90
24	40	281	1.52
24, 32	48	235	1.27
24, 32	56	201	1.09
24, 32	64	176	0.95
24	72	156	0.84
24	80	141	0.76
32	96	117	0.63
16	256	44	0.24

 $\Lambda I = T (\Lambda I_{a}) (I) = T / T$

Particle Data Book

 \sim 1,500 pages

zero pages on Quark-Gluon Plasma...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▶ ▲□

SLIDES TO HELP ME ANSWER DUMB QUESTIONS

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

SLIDES TO HELP ME ANSWER TRICKY QUESTIONS

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Physics/lattice parameters

1st Generation

2 flavours

smaller volume: $(2\text{fm})^3$ coarser lattices: $a_s = 0.167$ fm quark mass: $M_{\pi}/M_{\rho} \sim 0.55$ temporal cut-off: $a_{\tau} \sim 7.4$ GeV

 $N_s N_\tau T(\text{MeV}) T/T_c$

12	16	460	2.09
12	18	409	1.86
12	20	368	1.68
12	24	306	1.40
12	28	263	1.20
12	32	230	1.05
12	80	90	0.42

2nd Generation 2+1 flavours

larger volume: $(3\text{fm})^3 - (4\text{fm})^3$ finer lattices: $a_s = 0.123$ fm quark mass: $M_\pi/M_\rho \sim 0.45$ temporal cut-off: $a_\tau \sim 5.6$ GeV

Ns	$N_{ au}$	T(MeV)	T/T_c
		• • •	, -

24, 32	16	352	1.90
24	20	281	1.52
24, 32	24	235	1.27
24, 32	28	201	1.09
24, 32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

MEM systematics

- default model
- time range
- energy discretisation: $\omega = \{\omega_{\min}, \omega_{\min} + \Delta \omega \dots \omega_{\max}\}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- number of configs
- numerical precision

(All true also for BR)

Recall $\mathcal{I}(\rho) \leq N_t$ for MEM

Can vary this in free case by varying N_t

Feature Resolution

MEM can reproduce features smaller than the characteristic size of its basis functions:

 $a_t \omega$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

MEM: more than you ever wanted to know

The Task

Given data D

Find fit *F* by maximising P(F|D)

Bayes Theorem

Need to maximise P(F|D)

Bayes Theorem:

P(F|D)P(D) = P(D|F)P(F)i.e. $P(F|D) = \frac{P(D|F)P(F)}{P(D)}$

But $P(D|F) \sim e^{-\chi^2} \longrightarrow$ minimising $\chi^2 \neq$ maximising P(F|D) \longrightarrow *Maximum Likelihood Method* wrong??

No! Since for simple $F(t) = Ze^{-Mt}$, $P(F) = P(Z, M) \sim \text{const}$

・ロト・西ト・ヨト ・日・ うろの

Bayes Theorem

Need to maximise P(F|D)

Bayes Theorem:

$$P(F|D)P(D) = P(D|F)P(F)$$

i.e.
$$P(F|D) = \frac{P(D|F)P(F)}{P(D)}$$

But $P(D|F) \sim e^{-\chi^2} \longrightarrow$ minimising $\chi^2 \neq$ maximising P(F|D) \longrightarrow Maximum Likelihood Method wrong??

No! Since for simple $F(t) = Ze^{-Mt}$, $P(F) = P(Z, M) \sim \text{const}$

Priors

Actually $P(F = \text{elephant}) \equiv 0$

 \rightarrow "priors" which encode any additional information (a.k.a. predisposition, prejudices, impartialities, biases, prediliction, subjectivity, ...) E.g. in L.G.T. $P(M < 0) \equiv 0$

Maximum Likelihood Method applies this prior implicitly Can encode prior information with "entropy" = S (dis-information) Define $\mathcal{I}(F)$ = "Information content" of F

> "Bland" F has $\mathcal{I}(F) \sim 0$ and $S \gg 0$ "Spiky" F has $\mathcal{I}(F) \gg 0$ and $S \equiv 0$

> > (ロ)、

Priors

Actually $P(F = \text{elephant}) \equiv 0$

 \longrightarrow "priors" which encode any additional information

(a.k.a. predisposition, prejudices, impartialities, biases, prediliction, subjectivity, ...)

E.g. in L.G.T. $P(M < 0) \equiv 0$

Maximum Likelihood Method applies this prior implicitly

Can encode prior information with "entropy" = *S* (dis-information) Define $\mathcal{I}(F)$ = "Information content" of *F*

> "Bland" F has $\mathcal{I}(F) \sim 0$ and $S \gg 0$ "Spiky" F has $\mathcal{I}(F) \gg 0$ and $S \equiv 0$

Entropy

	No Data	Data
No Prior	$\mathcal{I}(F)\equiv 0$	F from min χ^2
Prior	$F \equiv prior$	F from max $P(F D)$

 $P(F) = e^{-S}$