Nucleons and parity doubling across the deconfinement transition

Chris Allton
Swansea University, U.K.

Lattice 2015, Kobe, July 2015
arXiv:1502.03603

FASTSUM Collaboration

Gert Aarts ${ }^{1}$, CRA ${ }^{1}$, Alessandro Amato ${ }^{1,2}$, Davide de Boni ${ }^{1}$, Wynne Evans ${ }^{1,3}$, Pietro Giudice ${ }^{4}$, Simon Hands ${ }^{1}$, Benjamin Jäger ${ }^{1}$, Aoife Kelly ${ }^{5}$, Seyong Kim ${ }^{6}$, Maria-Paola Lombardo ${ }^{7}$, Dhagash Mehta ${ }^{8}$, Bugra Oktay ${ }^{9}$, Chrisanthi Praki ${ }^{1}$, Sinead Ryan ${ }^{10}$, Jon-Ivar Skullerud ${ }^{5}$, Tim Harris ${ }^{10,11}$
${ }^{1}$ Swansea University
${ }^{2}$ University of Helsinki
${ }^{3}$ University of Bern
${ }^{4}$ Münster University
${ }^{5}$ Maynooth University
${ }^{6}$ Sejong University
${ }^{7}$ Frascati, INFN
${ }^{8}$ North Carolina State University
${ }^{9}$ University of Utah
${ }^{10}$ Trinity College Dublin
${ }^{11}$ University of Mainz

Setting the scene

- anisotropic lattices $a_{\tau}<a_{s}$
- allowing better resolution, particularly at finite temperatures (since $\left.T=\left(N_{\tau} a_{\tau}\right)^{-1}\right)$
- "2nd" generation lattice ensembles
- moving towards continuum, infinite volume, realistic light quark masses

Physics/lattice parameters

2nd Generation

2+1 flavours

larger volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$ finer lattices: $a_{s}=0.123 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.45$ temporal cut-off: $a_{\tau} \sim 5.6 \mathrm{GeV}$
$N_{s} \quad N_{\tau} T(\mathrm{MeV}) T / T_{c}$

N_{s}	N_{τ}	$T(\mathrm{MeV})$	T / T_{C}
24,32	16	352	1.90
24	20	281	1.52
24,32	24	235	1.27
24,32	28	201	1.09
24,32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

Gauge Action:
Symanzik-improved, tree-level tadpole Fermion Action:
clover, stout-links, tree-level tadpole

Previous Physics Results

- Bottomonium and Charmonium Spectral Functions
- Charmonium Potential

- Conductivity, Susceptibility and Diffusion Coefficient

Baryons at Finite Temperature

- little work on Baryons @ $T \neq 0$
- DeTar and Kogut (1987) screening masses
- QCD-TARO (2005) $\mu \neq 0$
- Datta et al (2013) quenched

We use a standard baryon operator:

$$
O_{N}(\mathbf{x}, \tau)=\epsilon_{a b c} u_{a}(\mathbf{x}, \tau)\left[u_{b}^{T}(\mathbf{x}, \tau) \mathcal{C} \gamma_{5} d_{c}(\mathbf{x}, \tau)\right]
$$

and parity project it:

$$
O_{N_{ \pm}}(\mathbf{x}, \tau)=P_{ \pm} O_{N_{ \pm}}(\mathbf{x}, \tau)
$$

Forward (+ve) and backward (-ve) parity states in correlator [Praki's talk]:

$$
\begin{aligned}
G_{+}(\tau) & =\int d^{3} x\left\langle O_{N_{+}}(\mathbf{x}, \tau) \bar{O}_{N_{+}}(\mathbf{0}, 0)\right\rangle \\
& =\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\frac{e^{-\omega \tau}}{1+e^{-\omega / T}} \rho_{+}(\omega)-\frac{e^{-\omega(1 / T-\tau)}}{1+e^{-\omega / T}} \rho_{-}(\omega)\right]
\end{aligned}
$$

Baryon Correlators

(Using Gaussian smeared baryon operators)

Baryon Correlators

(Using Gaussian smeared baryon operators)

Baryon Correlators

(Using Gaussian smeared baryon operators)
\longrightarrow parity doubling for $T \gtrsim T_{C}$ observed at correlator level

Correlators - Parity Comparison

Experiment:
+ve parity: $M_{N}=939 \mathrm{MeV} \quad$-ve parity: $M_{N *}=1535 \mathrm{MeV}$

Correlators - Parity Comparison

Experiment:
+ve parity: $M_{N}=939 \mathrm{MeV} \quad$-ve parity: $M_{N *}=1535 \mathrm{MeV}$

Naive Exponential Fits

$$
T / T_{c} \quad m_{+}[\mathrm{GeV}] \quad m_{-}[\mathrm{GeV}] \quad m_{+}-m_{-}[\mathrm{MeV}]
$$

0.24	$1.20(3)$	$1.9(3)$	~ 700	cf expt: ~ 600
0.76	$1.18(9)$	$1.6(2)$		
0.84	$1.08(9)$	$1.6(1)$		
0.95	$1.12(14)$	$1.3(2)$		

Parity Comparison

Define $\quad R(t)=\frac{G(\tau)-G\left(N_{\tau}-\tau\right)}{G(\tau)+G\left(N_{\tau}-\tau\right)}$
Datta et al, arXiv:1212.2927
Note: $\quad R(1 / 2 T) \equiv 0$
with: $\quad R(\tau) \equiv 0 \quad$ for parity symmetry

Parity Restoration

Effects of Smearing

Above results used Gaussian smearing with sources/sinks, η smeared with:
$\eta^{\prime}=C(1+\kappa H)^{n} \eta$ using $\kappa=8.7$ and $n=140$ Capitani et al [arXiv:1205.0180]
Systematics checks of smearing

- vary n
- vary τ-range

Effects of Smearing

Above results used Gaussian smearing with sources/sinks, η smeared with:
$\eta^{\prime}=C(1+\kappa H)^{n} \eta$ using $\kappa=8.7$ and $n=140$ Capitani et al [arXiv:1205.0180]
Systematics checks of smearing:

- vary n
- vary τ-range

Effects of Smearing

Systematics checks of smearing:

- vary n
- vary τ-range

Implies parity doubling is:

- ground state feature (recall Wilson term breaks chiral symmetry)
- not an artefact of smearing

Maximum Entropy Method (MEM)

Cont: $G(\tau)=\int K(\tau, \omega) \rho(\omega) d \omega \quad$ Lat: $\quad G\left(\tau_{i}\right)=\sum_{j} K\left(\tau_{i}, \omega_{j}\right) \rho\left(\omega_{j}\right)$ Input data: $\tau_{i}, i=\{1, \ldots, \mathcal{O}(10)\} \quad$ Output data : $\omega_{j}, j=\left\{1, \ldots, \mathcal{O}\left(10^{3}\right)\right\}$

$$
\longrightarrow \text { ill-posed }
$$

Bayes Th'm:

$$
\begin{aligned}
& P[\rho \mid D H]=\frac{P[D \mid \rho H] P[\rho \mid H]}{P[D \mid H]} \propto \exp \left(-\chi^{2}+\alpha S\right) \\
& H=\text { prior knowledge } \quad D=\text { data }
\end{aligned}
$$

Shannon-Jaynes entropy: $S=\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\rho(\omega)-m(\omega)-\rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)}\right]$

Maximum Entropy Method (MEM)

Cont: $G(\tau)=\int K(\tau, \omega) \rho(\omega) d \omega \quad$ Lat: $\quad G\left(\tau_{i}\right)=\sum_{j} K\left(\tau_{i}, \omega_{j}\right) \rho\left(\omega_{j}\right)$ Input data: $\tau_{i}, i=\{1, \ldots, \mathcal{O}(10)\} \quad$ Output data : $\omega_{j}, j=\left\{1, \ldots, \mathcal{O}\left(10^{3}\right)\right\}$

\longrightarrow ill-posed

Bayes Th'm: $\quad P[\rho \mid D H]=\frac{P[D \mid \rho H] P[\rho \mid H]}{P[D \mid H]} \propto \exp \left(-\chi^{2}+\alpha S\right)$

$$
H=\text { prior knowledge } \quad D=\text { data }
$$

Shannon-Jaynes entropy: $\quad S=\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\rho(\omega)-m(\omega)-\rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)}\right]$
Competition between minimising χ^{2} and maximising S
Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

MEM for finite T baryons

Recall: $\quad G_{+}(\tau)=\int d^{3} x\left\langle O_{N_{+}}(\mathbf{x}, \tau) \bar{O}_{N_{+}}(\mathbf{0}, 0)\right\rangle$
Praki's talk: $\quad=\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\frac{e^{-\omega \tau}}{1+e^{-\omega / T}} \rho_{+}(\omega)-\frac{e^{-\omega(1 / T-\tau)}}{1+e^{-\omega / T}} \rho_{-}(\omega)\right]$
So can define: $\quad K(\tau, \omega)=\frac{e^{-\omega \tau}}{1+e^{-\omega / T}} \quad \omega>0$

$$
=\frac{e^{+\omega(1 / T-\tau)}}{1+e^{+\omega / T}} \quad \omega<0
$$

and use MEM with $\quad G_{+}(\tau) \equiv \int_{-\infty}^{+\infty} K(\tau, \omega) \rho(\omega) d \omega$

$$
\begin{array}{rlrl}
\text { giving: } & \rho_{+}(\omega) & \equiv \rho(\omega) & \\
& \rho_{-}(-\omega) & \equiv-\rho(\omega) & \\
\omega<0
\end{array}
$$

BUT need to assume $\rho(\omega)$ is positive definite for MEM to work

Baryonic Spectral Functions

Preliminary

Baryonic Spectral Functions - Systematic Checks

Checking systematics by using MEM on fixed τ windows:

$$
\tau=1,2, \ldots 7, N_{\tau}-7, N_{\tau}-6, \ldots, N_{\tau}-1
$$

Preliminary

Summary

Baryonic Parity Restoration:

- Signicant thermal effects in -ve parity nucleon
- No observed thermal modification of + ve parity mass below T_{C}
- Degeneracy in ground state of baryonic parity partners above T_{c}
- Finite temperature baryonic spectral functions determined

ω

Future work:
strange baryons
chiral fermions
> finer lattices

Summary

Baryonic Parity Restoration:

- Signicant thermal effects in -ve parity nucleon
- No observed thermal modification of + ve parity mass below T_{C}
- Degeneracy in ground state of baryonic parity partners above T_{c}
- Finite temperature baryonic spectral functions determined

ω
Future work:
- strange baryons
- chiral fermions
- finer lattices

Physics/lattice parameters

2nd Generation

2+1 flavours
larger volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$ finer lattices: $a_{s}=0.123 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.45$
temporal cut-off: $a_{\tau} \sim 5.6 \mathrm{GeV}$

N_{s}	N_{τ}	$T(\mathrm{MeV})$	T / T_{c}
24,32	16	352	1.90
24	20	281	1.52
24,32	24	235	1.27
24,32	28	201	1.09
24,32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

3rd Generation

2+1 flavours

larger volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$ finer lattices: $a_{s}=0.123 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.45$ temporal cut-off: $a_{\tau} \sim 11.2 \mathrm{GeV}$
$N_{s} \quad N_{\tau} \quad T(\mathrm{MeV}) T / T_{c}$

Particle Data Book

~ 1,500 pages
zero pages on Quark-Gluon Plasma...

SLIDES TO HELP ME ANSWER DUMB QUESTIONS

SLIDES TO HELP ME ANSWER TRICKY QUESTIONS

Physics/lattice parameters

1st Generation

2 flavours

smaller volume: $(2 \mathrm{fm})^{3}$ coarser lattices: $a_{s}=0.167 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.55$ temporal cut-off: $a_{\tau} \sim 7.4 \mathrm{GeV}$

$$
N_{s} N_{\tau} T(\mathrm{MeV}) T / T_{c}
$$

N_{S}	N_{τ}	$T(\mathrm{MeV})$	T / T_{c}
12	16	460	2.09
12	18	409	1.86
12	20	368	1.68
12	24	306	1.40
12	28	263	1.20
12	32	230	1.05
12	80	90	0.42

2nd Generation

2+1 flavours

larger volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$ finer lattices: $a_{s}=0.123 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.45$ temporal cut-off: $a_{\tau} \sim 5.6 \mathrm{GeV}$

N_{s}	N_{τ}	$T(\mathrm{MeV})$	T / T_{C}
24,32	16	352	1.90
24	20	281	1.52
24,32	24	235	1.27
24,32	28	201	1.09
24,32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

MEM systematics

- default model
- time range
- energy discretisation: $\omega=\left\{\omega_{\min }, \omega_{\min }+\Delta \omega \ldots \omega_{\max }\right\}$
- number of configs
- numerical precision
(All true also for BR)

Recall $\mathcal{I}(\rho) \leq N_{t}$ for MEM
Can vary this in free case by varying N_{t}

Feature Resolution

MEM can reproduce features smaller than the characteristic size of its basis functions:

MEM: more than you ever wanted to know

gen2_NRQCD_40 sonia_40_spp_i_000 K=.00000,.00000 \# 2
$\mathrm{t}=2-38 \mathrm{Err}=\mathrm{J}$ Sym=N \#cfgs=502\#cfg/clus= 1

The Task

Given data D

Find fit F by maximising $P(F \mid D)$

Bayes Theorem

Need to maximise $P(F \mid D)$
Bayes Theorem:

$$
P(F \mid D) P(D)=P(D \mid F) P(F)
$$

Bayes Theorem

Need to maximise $P(F \mid D)$
Bayes Theorem:

$$
\begin{aligned}
& P(F \mid D) P(D)=P(D \mid F) P(F) \\
& \text { i.e. } \quad P(F \mid D)=\frac{P(D \mid F) P(F)}{P(D)}
\end{aligned}
$$

But $P(D \mid F) \sim e^{-\chi^{2}} \longrightarrow$ minimising $\chi^{2} \neq$ maximising $P(F \mid D)$ \longrightarrow Maximum Likelihood Method wrong??

No! Since for simple $F(t)=Z e^{-M t}, P(F)=P(Z, M) \sim$ const

Priors

Actually $P(F=$ elephant $) \equiv 0$
\longrightarrow "priors" which encode any additional information
(a.k.a. predisposition, prejudices, impartialities, biases, predilicion, subjectivit, ...)
E.g. in L.G.T. $P(M<0) \equiv 0$

Maximum Likelihood Method applies this prior implicitly
Can encode prior information with "entropy" $=S$ (dis-information)
Define $T(F)=$ "Information content" of F

Priors

Actually $P(F=$ elephant $) \equiv 0$
\longrightarrow "priors" which encode any additional information
(a.k.a. predisposition, prejudices, impartialities, biases, predilicion, subjectivit, ...)
E.g. in L.G.T. $P(M<0) \equiv 0$

Maximum Likelihood Method applies this prior implicitly
Can encode prior information with "entropy" $=S$ (dis-information)
Define $I(F)=$ "Information content" of F
"Bland" F has $I(F) \sim 0$ and $S \gg 0$
"Spiky" F has $\mathcal{I}(F) \gg 0$ and $S \equiv 0$

Entropy

	No Data	Data
No Prior	$\mathcal{I}(F) \equiv 0$	F from min χ^{2}
Prior	$F \equiv$ prior	F from max $P(F \mid D)$
$\qquad P(F)=e^{-S}$		

