Large volume calculation of pion-pion scattering phase shifts with the stochastic LapH method

John Bulava Trinity College Dublin

Lattice 2015 Kobe, Japan July 14th, 2015

People Involved

- Brendan Fahy KEK
- Colin Morningstar Carnegie Mellon U.
- John Bulava Trinity College Dublin
- Ben Hoerz Trinity College Dublin
- Chik Him (Ricky) Wong U. of Wuppertal
- K. J. (Jimmy) Juge U. of the Pacific

Motivation

- Pi-pi scattering phase shifts are being calculated by several groups
- Can we push to lighter pion masses and larger volumes?
 - Larger volumes => improved resolution
 - Lighter pions => four pion thresholds are relevant
- A first exploratory study:
 - $N_f = 2 + 1$ anisotropic Wilson clover
 - $a_s/a_t \approx 3.5$ large volume, but good temporal resolution
 - $32^3 \times 256$, $m_\pi \approx 240 \text{MeV}$, $a_s \approx 0.12 \text{fm}$, $L \approx 4 \text{fm}$
 - $m_{\pi}T \approx 10$ => safe from thermal effects

Disconnected diagrams require 'all-to-all' propagators

• 'Distillation': important physics is captured by a low-dimensional subspace.

$$abla^2 v_n = \lambda_n v_n$$
 M. Peardon, et al. `08

- Subspace spanned by $N_{ev} << 12L^3 \times T$ eigenvectors of the (covariant) 3-D Laplace operator.
- Projector acts like a 'smearing' operator (think: Lossy compression)

- Unfortunately, number of modes becomes prohibitively large in large volume: $N_{ev} \propto V$
- Use stochastic estimation in the low-dimensional subspace:

Morningstar, et al `11

$$\psi_{a\alpha}^r(x) = \rho_{\alpha i}^r v_{ia}(x), \quad \rho_{\alpha i}^r \in U(1)$$

 Locally coherent nature modes => good stochastic estimators with favorable volume scaling

Another advantage: Facilitates correlation matrix construction

 In order to extract excited energy levels, we require a matrix of temporal correlators between all operators in a basis.

$$C_{ij}(t) = \sum_{n} \langle 0 | \hat{\mathcal{O}}_i | n \rangle \langle n | \hat{\mathcal{O}}_j^{\dagger} | 0 \rangle \mathrm{e}^{-E_n t}$$

- Complete separation of Dirac matrix simplifies this. $\psi^k = M^{-1}\eta^k$

$$\omega_{k\ell}^i(t) = \sum_{\vec{x}} \psi^{k\dagger}(x) \Gamma_i \psi^\ell(x) \qquad \kappa_{k\ell}^j(t_0) = \sum_{\vec{x}_0} \eta^{k\dagger}(x_0) \Gamma_j \eta^\ell(x_0)$$

$$C_{ij}^{\pi}(t - t_0) = \omega_{k\ell}^{i}(t)\kappa_{\ell k}^{j*}(t_0)$$

$$C_B^{I=2,\,2\pi}(t-t_0) = \omega_{k\ell}^i(t)\kappa_{\ell m}^{j*}(t_0)\omega_{mn}^i(t)\kappa_{nk}^{j*}(t_0)$$

Using the Lüscher quantization condition: det[1 + F(S - 1)] = 0

$$\mathbf{P}_{tot} = \frac{2\pi}{L} \mathbf{d}, \quad \mathbf{p} = \frac{2\pi}{L} \mathbf{u}, \ \gamma = \frac{E}{E_{cm}}, \quad w_{\ell m} = \frac{8Z_{\ell m}(\mathbf{d}, \gamma, \mathbf{u}^2)}{\gamma \pi^{-3/2} L^3 u^{\ell - 2}}$$

We solve the GEVP (on the mean) at (t_0, t_*) and form

$$\hat{C}_{mn}(t) = (v_n, C(t)v_m)$$

- Fit the diagonal elements to a single exponential
- Consistent with fits to the full rotated matrix to the ansatz

$$\hat{C}_{mn}(t) = \sum_{i=1}^{n_{fit}} A_{im} A_{in}^* e^{-E_i t}$$

Center-of-mass energies and overlaps:

$$Z_{in} = |\langle 0|\hat{\mathcal{O}}_i|n\rangle|^2$$

Breit-Wigner fit (consistent with effective range):

$$p^3 \cot \delta_1 = (m_R^2 - s) \frac{6\pi\sqrt{s}}{g_R^2}$$

 $\frac{m_{\rho}}{m_{\pi}} = 3.395(33), \qquad g_{\rho\pi\pi} = 6.71(49), \qquad \frac{\chi^2}{d.o.f} = 1.36$

Argand plot shows characteristic phase motion:

Recent results from the JLab group on the same ensemble:

Wilson, et al `15

$$a_t m_{\rho} = 0.13175(35), \quad g_{\rho\pi\pi} = 5.688(75)$$

This work:

$$a_t m_{\rho} = 0.1337(11), \quad g_{\rho\pi\pi} = 6.71(49)$$

Dirac matrix inversions per configuration:

• JLab uses exact distillation

$$N_{inv} = 4N_{ev}N_t = 4 \times 384 \times 256 = 393,216$$

• Our stochastic Laph dilution scheme requires

$$N_{inv} = 4N_{dil}^{conn}N_{t_0} + N_{dil}^{disc} = 4 \times 32 \times 8 + 512 = 1536$$

Preliminary I = 2 results:

$$\mathbf{P}_{tot} = \frac{2\pi}{L} \mathbf{d}, \quad \mathbf{p} = \frac{2\pi}{L} \mathbf{u}, \ \gamma = \frac{E}{E_{cm}}, \quad w_{\ell m} = \frac{2Z_{\ell m}(\mathbf{d}, \gamma, \mathbf{u}^2)}{\gamma \pi^{-1/2} L u^{\ell}}$$

d	Λ	$ \mathbf{p} \cot \delta_0$
$\boxed{ (0,0,0)}$	A_{1g}^+	w_{00}
[(0,0,n)	A_1^+	w_{00}
$\left[(0,n,\pm n) \right]$	A_1^+	w_{00}
$\boxed{(n,\pm n,\pm n)}$	A_1^+	w_{00}

- We ignore higher partial waves $\ \ell \geq 2$

Effective range fit:

$$p \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2}rp^2$$

 $m_{\pi}a_0 = -0.157(19), \quad m_{\pi}r = 7.9(2.4), \quad \frac{\chi^2}{d.o.f} = 0.61$

• Future plans: The $I = 0, \pi \pi$ (vacuum) channel.

Morningstar, et al `11

• Now a full correlation matrix: $\sigma \pi \pi \eta \eta G$

r Mor

Morningstar, et al `13

Conclusions

- Stochastic LapH seems to scale to larger volumes and lighter pion masses
- Systematics left to address
 - Chiral behavior: complicated by multi-hadron thresholds
 - (exponential) finite volume effects
 - Cutoff effects
- Future Plans: Resonance Form factors