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Currently quoted results for αs(mZ )

World average [PDG 2014]: αs(mZ ) = 0.1185(6)

PDG error estimate determined by lattice results!
How realistic are these small errors?

FLAG group average: αs(mZ )|lattice = 0.1184(12)
[arXiv:1310.8555v2]
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The QCD Λ-parameter and αs(µ) = ḡ 2(µ)/4π

Λ

µ
=
[
b0ḡ
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]− b1

2b2
0 e
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2b0ḡ2(µ) exp

{
−
∫ ḡ (µ)

0
dg
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b0g3
− b1

b2
0g

]}

Assume: coupling ḡ(µ) non-perturbatively defined, Nf

massless quarks

β(g) has expansion β(g) = −b0g
3 − b1g

5 + ..

b0 = (11− 2
3Nf)/(4π)2, b1 = (102− 38

3 Nf)/(4π)4, . . .

For αs(mZ ) want ΛNf=5; Given ΛNf=3 one still needs to match
across charm and bottom thresholds!

Scheme dependence of Λ almost trivial:

g2
X(µ) = g2

Y(µ) + cXYg
4
Y(µ) + ... ⇒ ΛX

ΛY
= ecXY/2b0

⇒ use ΛMS = ΛQCD as reference!
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The QCD Λ-parameter and αs(µ) = ḡ 2(µ)/4π
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Relation is exact at any scale µ.

require large µ to evaluate integral perturbatively
require small µ to match hadronic scale

⇒ use step-scaling method to bridge large scale difference
[Lüscher, Weisz, Wolff ’91]

Consider 2 renormalized finite volume couplings (L = 1/µ):

gSF(L): from Schrödinger functional (SF) with Abelian
background field [Lüscher et al. ’92]
gGF(L): from gradient flow observable 〈E (t, x)〉 in finite
volume, SF boundary conditions [Fritzsch & Ramos ’13]
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Overview of the strategy

Obtain FK calculated on Nf = 2 + 1 CLS configurations:

O(a) improved Wilson quarks [Bulava & Schaefer ’13]
Tree-level O(a2) improved Lüscher-Weisz action,
Open boundary conditions, openQCD code [Lüscher &
Schaefer ’10–’14];
Very precise ZA [talk by M. Dalla Brida]

[JHEP 1502 (2015) 043, & talk by S. Schaefer];

Match FK to Lmax ≈ 0.5 fm (defined through GF-coupling)

Step scaling (2-3 steps) for gGF(L) from 0.5 fm to
Lswi ≈ 0.05 fm

At scale Lswi switch from GF to SF scheme; also change from
Lüscher-Weisz to Wilson gauge action

Step-scaling for gSF(L), extract LswiΛQCD

Combine results to obtain ΛQCD/FK
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Overview of the strategy

Lswi

g2SF(Lswi)
g2GF(Lswi)
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Why not just a single coupling?

Need 1-loop matching to g2
MS

to obtain Λ/ΛQCD.

Precision: 3-5% for Λ ⇔ 0.5-1% for αs(mZ ).

Difficult to reach without 3-loop result for β(g):

I (ḡ(µ)) =

∫ ḡ (µ)

0
dg

[
1

β(g)
+

1

b0g3
− b1

b2
0g

]}
=

(
b2

2b2
0

− b2
1

2b3
0

)
ḡ2(µ)+. . .

⇒ approximate exp (−I (ḡ)) = 1 unless b2 is known!
To be within 2% (1%) of the 3- or 4-loop value need to reach:

ḡ2
MS

(µ) < 2.5 (1.3) ḡ2
SF(L) < 0.87 (0.44)

N.B.: only known a posteriori for a new scheme (e.g. GF)!
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Comparison gGF vs. gSF

SF-coupling:

• 3-loop β-function (i.e.b2) is known [Bode, Weisz, Wolff ’99]

• 2-loop ct known: O(a) boundary effects highly suppressed

• ∆(1/ḡ2) ∝ (∆L)/L, roughly independent of ḡ .

• requires very large statistics; variance increases with L/a.

• large physical volumes very difficult (N.B. coupling defined by
variation of b.c.’s).

GF-coupling (finite volume, SF b.c.’s)

• high statistical precision

• can be measured in large physical volumes; ideal to match
hadronic physics!

• ΛGF/ΛQCD not yet known; only universal b0, b1 can be used.

• ∆(1/ḡ2) ∝ 1/ḡ2: more expensive as ḡ decreases.

• Relatively large O(a2) effects; can we reduce these?
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Strategy to calculate LswiΛQCD

Define Lswi implicitly by ḡ2
SF(Lswi) = 2.012

Obtain continuum step scaling function (SSF) by fit ansatz
for continuum & cutoff effects

σ(u) = ḡ2
SF(2L)|u=ḡ2

SF(L)

for a range of u-values, u ∈ [1.10891, 2.0120]

Given σ(u) start with u0 = 2.012 and find u1, u2,...,u5.

un−1 = σ(un), n = 1, . . . , 5, ⇒ un = ḡ2
SF

(
2−nLswi

)
At scale 2−nLswi evaluate I (ḡ) and obtain ΛSF

Connect to MS scheme ΛNf=3
SF /ΛNf=3

QCD = 0.382863(1)

Simulations:

On lattices with sizes L/a = 4, 6, 8, 12 measure u = ḡ2(L).

requires precise knowledge of massless limit, i.e. κcr(g0, L/a)

Double lattice size and measure Σ(u, a/L) = ḡ2(2L)

use Σ(u, a/L) or reduce cutoff effects perturbatively up to
2-loop order → Σ′(u, a/L).
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Obtaining the SSF in the continuum

Example for global fit ansatz:

Σ′(u, a/L) = u + s0u
2 + s1u

3

+ c1u
4 + c2u

5

+ ρ1u
4 a

2

L2

s0, s1 fixed to
perturbative values:

s0 = 2b0 ln 2, s1 = s2
0 +2b1 ln 2

3 parameters: c1, c2, ρ1;
19 data points,

χ2/d.o.f. = 1.099

u

[σ
(u

)−
u]

 / 
u
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Precision compared to earlier results for Nf = 0, 2, 3, 4

u
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Precision compared to earlier results for Nf = 0, 2, 3, 4
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Various fits (3-5 parameters,
perturbatively improved &
unimproved data), find
stability after n = 2, 3
step-scaling steps

⇒ LswiΛ
Nf=3

MS
= 0.0802(16)

(preliminary)
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On the definition of g 2
GF

Choose same bare action as CLS in large volume;

SF boundaries: use variant B by [Aoki, Frezzotti, Weisz, ’98]

Boundary O(a) improvement: ct, c̃t to 1-loop order
[Aoki, Ide, Takeda ’03; Vilaseca ’15]

Study of O(a) boundary effects (PT and quenched):
1 T = L, c =

√
8t/L = 0.3 seems OK;

2 advantageous to restrict to magnetic components at x0 = T/2:

− 1
2 〈 tr {Gkl(t, x)Gkl(t, x)}〉

∣∣
x0=T/2,T=L,mq=0

= N (c , a/L) g2
GF(L)

Use N (c , a/L) for given L/a ⇒ g2
GF = g2

0 exact at tree-level.

Wilson flow & O(a2) improved Zeuthen flow

Clover & O(a2) improved observable

topology freezing: use projection on Q = 0 sector [Fritzsch,
Ramos, Stollenwerk ’13]; becomes relevant for L > 0.25 fm
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Matching at the switching scale Lswi (Wilson action)

ḡ2
SF(Lswi) = 2.012⇒ (β, L/a)→ (β, 2L/a)⇒ ḡ2

GF(2Lswi) = 2.6808(54)

(preliminary)
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Summary status: ΛNf=3
QCD with target error < 4-5%

SF coupling for L < Lswi ≈ 0.05 fm;
unprecedented precision (high statistics & precise tuning of κ):

ḡ2
SF(Lswi) = 2.012 ⇒ LswiΛ

Nf=3

MS
= 0.0802(16) (preliminary)

Definition of gradient flow coupling ḡ2
GF(L) settled:

reduced boundary O(a) effects by restricting E (t, x) to
magnetic components;
Symanzik O(a2) improvement: Zeuthen flow and observable.

Matching at switching scale Lswi

ḡ2
GF(2Lswi) = 2.6808(54) (preliminary)

Running of ḡ2
GF(L) from 0.05− 0.1 fm to 0.5 fm:

precision tuning of κ finished;
simulations for step scaling function underway.

Connect to FK on CLS config’s: details to be defined.


