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Indirect CP violation: εK

SWME collaboration has been devoted to calculate the indirect CP violation
parameter εK and Vcb on the lattice, which is related to

Hadronic matrix element

Standard model (SM) : BK

Beyond the standard model : B2, · · · ,B5

CKM matrix element: Vcb

Lattice QCD calculation can provide a high precision test of the standard model.
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Renormalization of BK

Hadronic matrix element: BK

O∆S=2 =
∑
ν

[s̄γν(1− γ5)d ][s̄γν(1− γ5)d ]

Goal: Reducing the error from matching factor calculation for improved staggered
fermions

≈ 4.4% error from one-loop perturbation theory [J.J.Kim et al. PRD 81
(2010) 114503, PRD 83 (2011) 094503]

→≈ 2% error by non-perturbative renormalization (NPR) [J.H.Kim et al.
Lattice 2014]

Regularization independent momentum subtraction (RI-MOM) scheme
renormalization condition on a correlation function with exceptional momenta
as a subtraction point
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Contents

1 NPR for staggered bilinears with regularization independent symmetric
momentum scheme (RI-SMOM scheme)

2 Gribov uncertainty of Zq in the staggered NPR with exceptional subtraction
point (RI-MOM scheme)
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Part I

NPR in RI-SMOM scheme for staggered

bilinears
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Bilinear operator

Staggered bilinear Operator

OS⊗F
i (y) =

∑
AB

χi (yA)(γS ⊗ ξF )ABUi ;AB(y)χi (yB)

i : gauge configuration index

y : hypercube coordinates on the lattice with its spacing 2a, yA = 2y + A

A,B : hypercube vectors. Each element is 0 or 1. ex) B = (0, 0, 1, 1)

(γS ⊗ ξF )CD =
1

4
tr[γ†CγSγDγ

†
F ] , where γD = γD1

1 γD2
2 γD3

3 γD4
4
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Amputated Green’s function

Amputated Green’s function in the momentum
space

Λ̃S⊗F
c1c2

(p̃1 + πA, p̃2 + πB)

p̃i is the momentum in reduced Brillouin
zone.

p ∈ (−π
a
,
π

a
]4, p̃ ∈ (− π

2a
,
π

2a
]4

where p = p̃ + πB and πB(≡ π

a
B) is cut-off

momentum in hypercube.

c1, c2 : color index
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Projected amputated Green’s function

Projected amputated Green’s function

Γαβ(p̃1, p̃2) =
∑
AB

∑
c1c2

[Λ̃αc1c2
(p̃1 + πA, p̃2 + πB)P̂βBA;c2c1

]

The projection operator is

P̂βBA;c2c1
=

1

48
(γ†S′ ⊗ ξ†F ′)BAδc2c1

α = (γS ⊗ ξF ), β = (γS′ ⊗ ξF ′)

(γS ⊗ ξF )AB =
1

16

∑
CD

(−1)A·C (γS ⊗ ξF )CD(−1)D·B
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Scheme condition for S ⊗ S

sym implies the condition p̃2
1 = p̃2

2 = q̃2 where q̃ = p̃1 − p̃2

ΓS⊗S(p̃1, p̃2)|sym = 1 (tree level)

=
1

48

∑
AB

∑
c1c2

[Λ̃S⊗S
c1c2

(p̃1 + πA, p̃2 + πB)(1⊗ 1)BAδc2c1 ]sym

Renormalization factor of the scalar operator ZS⊗S = 1
Zm

and,

ΓS⊗S = Z−1
q ZS⊗SΓS⊗S

B = 1 determines the mass renormalization Zm.

ΓS⊗S
B = ZmZq
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Scheme conditions for V ⊗ S

RI-SMOMγµ scheme uses projectors the same as RI-MOM scheme.

ΓV⊗S(p̃1, p̃2)|sym = 1 (tree level)

=
1

48 · 4
∑
µ

∑
AB

∑
c1c2

[Λ̃
Vµ⊗S
c1c2 (p̃1 + πA, p̃2 + πB)(γ†µ ⊗ 1)BAδc2c1 ]sym

RI-SMOM scheme condition for the vector operator

ΓV⊗S(p̃1, p̃2)|sym = 1 (tree level)

=
1

48 · q̃2

∑
µ

∑
AB

∑
c1c2

[q̃µΛ̃
Vµ⊗S
c1c2 (p̃1 + πA, p̃2 + πB)

∑
ν

q̃ν(γ†ν ⊗ 1)BAδc2c1 ]sym

and we also tried the substitution q̃a→ sin(q̃a). Renormalization factor of
conserved vector current ZV = 1 and, ΓV⊗S = Z−1

q ΓV⊗S
B = 1 determines the wave

function renormalization Zq.

ΓV⊗S
B = Zq
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Simulation details

203 × 64 MILC asqtad lattice (a ≈ 0.12fm, aml/ams = 0.01/0.05)

Landau gauge fixed, HYP smearing, tadpole improved

10 number of configurations

1 valence quark mass (0.05)

5 sets of simple symmetric external momenta in the units of ( 2π
Ls
, 2π
Ls
, 2π
Ls
, 2π
Lt

)

p̃1 p̃2 (ap̃)2 (ap̃)4 GeV
(1, 1, 0, 0) (1, 0, 1, 0) 0.1974 0.0195 0.7363
(2, 2, 0, 0) (2, 0, 2, 0) 0.7896 0.3117 1.4727
(3, 3, 0, 0) (3, 0, 3, 0) 1.7765 1.5780 2.2090
(4, 4, 0, 0) (4, 0, 4, 0) 3.1583 4.9873 2.9454
(5, 5, 0, 0) (5, 0, 5, 0) 4.9348 12.1761 3.6817

3 sets of complicated symmetric momenta

p̃1 p̃1 q̃ (ap̃)2 (ap̃)4 GeV
(1, 2, 3, 0) (−2, 3, 1, 0) (3,−1, 2, 0) 1.3817 0.9546 1.9482
(2, 4, 2, 0) (−2, 2, 4, 0) (4, 2,−2, 0) 2.3687 2.8054 2.5508
(1, 3, 4, 0) (−3, 4, 1, 0) (4,−1, 3, 0) 2.5661 3.2924 2.6549
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Figure : Zq from conserved vector (γµ ⊗ 1) operator in the RI-SMOMγµ scheme
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Zq from various schemes
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Figure : Zq from conserved vector (γµ ⊗ 1) operator at 3GeV in the various
renormalization schemes
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Zm from various schemes
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Figure : Zq · Zm from scalar (1 ⊗ 1) operator at 3GeV in the various renormalization
schemes
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Part II

Gribov error for Zq of staggered NPR in

RI-MOM scheme
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Gauge fixing functional

On the lattice, the gauge fixing functional F in terms of link variable Uµ(x),

F =
1

2NC

1

4V

∑
µ,x

Tr[Uµ(x) + Uµ(x)†].

When the gauge is fixed, its variation w.r.t. gauge transformation
G (x) = e iω

a(x)T a∈ SU(NC ),

∆(x) ≡ δF

δωa(x)
T a → 0.

In other words, the Landau gauge fixing condition is

θ ≡ 1

NCV

∑
x

Tr[∆(x)∆†(x)] = 0.
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Gribov copy

Gribov (1978) discovered that for non-abelian gauge theories, usual linear
gauge conditions does not fix the gauge fields in a unique way.

There can be two different configurations that both satisfy the gauge fixing
condition, but related by nontrivial gauge transformation. Simply,

{U} → {Ug1}, {Ug2} (1)

such that θ[Ug1] = θ[Ug2] = 0, but F [Ug1] 6= F [Ug2].

Gribov ambiguity can appear in the matrix elements between quark states:

Need gauge fixing.
Additional Gribov copy degree exists and that may appear in the result with
statistical uncertainty.
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Simulation detail

203 × 64 MILC asqtad lattice (a ≈ 0.12fm, aml/ams = 0.01/0.05)

Landau gauge fixed, HYP smearing, tadpole improved

10 number of configurations

5 valence quark mass (0.01∼0.05)

Use exceptional momenta q̃ = p̃1 − p̃2 = 0 for RI-MOM scheme
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Gribov effect of nonperturbative ZRI-MOM
q

F =
1

2NC

1

4V

∑
µ,x

Tr[Uµ(x) + Uµ(x)†].

For each configuration (mother, with Fm),

1 Generate 100 randomly transformed configuration.

2 For all of them, run the gauge fixing (multi-GPU implemented Fourier
accelerated steepest descent method algorithm) and calculate F .

3 Pick the 1 configuration (daughter, one of the gribov copy with Fd) which
maximizes δF = |Fm − Fd |.

4 Calculate Z̃RI-MOM
q from the daughter configuration.

5 Compare it to ZRI-MOM
q from the mother configuration.
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Distribution of gauge fixed functional F
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Figure : Histogram of 100 confs. generated from a single mother conf. of MILC asqtad
coarse 203 × 64, β = 6.76 lattice.
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Distribution of the daughter configurations
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Zq chiral extrapolation in RI-MOM

f = c1 + c2am + c3(am)2 c1 c2 c3 χ2/d .o.f
daughter 0.78903(49) 0.005(13) -0.10(13) 0.00022(70)
mother 0.78883(37) 0.001(12) -0.05(13) 0.0012(38)

difference 0.33σ
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∆Zq ≡ Z̃q − Zq momentum fit in RI-MOM
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Fitting function: f (m, a, p̃) = c1 = 0.25(12)× 10−3

Fitting quality: χ2/d .o.f = 0.38(42)
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Conclusion

We studied NPR of the staggered bilinears in the RI-SMOM scheme. We plot
the data points from the single valence quark mass. We will do the
measurement for additional valence quark masses to do the chiral
extrapolation.

We observed that the Gribov error (∆ZGribov
q ) of staggered NPR with

RI-MOM scheme is about 0.02%, and it is . 1/20 of the statistical error of
the Zq from NPR.

Zq(3GeV, MS) sys. error stat. error ∆ZGribov
q (3GeV, MS)

1.0429 0.0243 0.0058 0.00024(12)

Hence we may neglect the systematic error due to Gribov ambiguity.
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