Nonperturbative renormalization in the RI-SMOM scheme and Gribov uncertainty in the RI-MOM scheme for staggered bilinears

Sungwoo Park ¹ Jangho Kim ² Jeonghwan Pak¹ Weonjong Lee ¹

[SWME Collaboration]

¹Seoul National University, South Korea

²Korea Institute of Science and Technology Information, South Korea

Lattice 2015, Kobe, Japan

Indirect CP violation: ϵ_K

SWME collaboration has been devoted to calculate the indirect CP violation parameter ϵ_K and V_{cb} on the lattice, which is related to

- Hadronic matrix element
 - Standard model (SM) : B_K
 - Beyond the standard model : B_2, \dots, B_5
- CKM matrix element: V_{cb}

Lattice QCD calculation can provide a high precision test of the standard model.

Renormalization of B_K

Hadronic matrix element: B_K

$$O_{\Delta S=2} = \sum_{
u} \left[\bar{s} \gamma_{
u} (1 - \gamma_5) d \right] \left[\bar{s} \gamma_{
u} (1 - \gamma_5) d \right]$$

Goal: Reducing the error from matching factor calculation for improved staggered fermions

- $\bullet \approx$ 4.4% error from one-loop perturbation theory [J.J.Kim et al. PRD 81 (2010) 114503, PRD 83 (2011) 094503]
- $\bullet \to \approx 2\%$ error by non-perturbative renormalization (NPR) [J.H.Kim et al. Lattice 2014]
 - Regularization independent momentum subtraction (RI-MOM) scheme
 - renormalization condition on a correlation function with exceptional momenta as a subtraction point

Contents

- NPR for staggered bilinears with regularization independent symmetric momentum scheme (RI-SMOM scheme)
- **②** Gribov uncertainty of Z_q in the staggered NPR with exceptional subtraction point (RI-MOM scheme)

Part I

NPR in RI-SMOM scheme for staggered bilinears

Bilinear operator

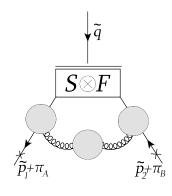
Staggered bilinear Operator

$$O_i^{S\otimes F}(y) = \sum_{AB} \overline{\chi}_i(y_A) \overline{(\gamma_S \otimes \xi_F)}_{AB} U_{i;AB}(y) \chi_i(y_B)$$

- i : gauge configuration index
- y: hypercube coordinates on the lattice with its spacing 2a, $y_A = 2y + A$
- ullet A,B: hypercube vectors. Each element is 0 or 1. ex) B=(0,0,1,1)

•
$$\overline{(\gamma_S \otimes \xi_F)}_{CD} = \frac{1}{4} \text{tr}[\gamma_C^\dagger \gamma_S \gamma_D \gamma_F^\dagger]$$
 , where $\gamma_D = \gamma_1^{D_1} \gamma_2^{D_2} \gamma_3^{D_3} \gamma_4^{D_4}$

Amputated Green's function



Amputated Green's function in the momentum space

$$\widetilde{\Lambda}_{c_1c_2}^{S\otimes F}(\widetilde{p}_1+\pi_A,\widetilde{p}_2+\pi_B)$$

• \widetilde{p}_i is the momentum in reduced Brillouin zone.

$$p \in \left(-\frac{\pi}{a}, \frac{\pi}{a}\right]^4, \qquad \tilde{p} \in \left(-\frac{\pi}{2a}, \frac{\pi}{2a}\right]^4$$

where $p = \tilde{p} + \pi_B$ and $\pi_B (\equiv \frac{\pi}{a}B)$ is cut-off momentum in hypercube.

• c_1, c_2 : color index

Projected amputated Green's function

Projected amputated Green's function

$$\Gamma^{\alpha\beta}(\widetilde{p}_{1},\widetilde{p}_{2}) = \sum_{AB} \sum_{c_{1}c_{2}} [\widetilde{\Lambda}_{c_{1}c_{2}}^{\alpha}(\widetilde{p}_{1} + \pi_{A},\widetilde{p}_{2} + \pi_{B})\widehat{\mathbb{P}}_{BA;c_{2}c_{1}}^{\beta}]$$

The projection operator is

$$\hat{\mathbb{P}}^{\beta}_{BA;c_2c_1} = \frac{1}{48} \overline{\overline{(\gamma^{\dagger}_{S'} \otimes \xi^{\dagger}_{F'})}}_{BA} \delta_{c_2c_1}$$

•
$$\alpha = (\gamma_S \otimes \xi_F), \ \beta = (\gamma_{S'} \otimes \xi_{F'})$$

•
$$\overline{(\gamma_S \otimes \xi_F)}_{AB} = \frac{1}{16} \sum_{CD} (-1)^{A \cdot C} \overline{(\gamma_S \otimes \xi_F)}_{CD} (-1)^{D \cdot B}$$

Scheme condition for $S \otimes S$

sym implies the condition $\tilde{p}_1^2=\tilde{p}_2^2=\tilde{q}^2$ where $\tilde{q}=\tilde{p}_1-\tilde{p}_2$

$$\begin{split} &\Gamma^{S\otimes S}(\widetilde{\rho_{1}},\widetilde{\rho_{2}})|_{sym} = 1 \quad \text{(tree level)} \\ &= \frac{1}{48} \sum_{AB} \sum_{c_{1}c_{2}} [\widetilde{\Lambda}_{c_{1}c_{2}}^{S\otimes S}(\widetilde{\rho_{1}} + \pi_{A},\widetilde{\rho_{2}} + \pi_{B}) \overline{\overline{(1\otimes 1)}}_{BA} \delta_{c_{2}c_{1}}]_{sym} \end{split}$$

Renormalization factor of the scalar operator $Z_{S\otimes S}=\frac{1}{Z_m}$ and, $\Gamma^{S\otimes S}=Z_q^{-1}Z_{S\otimes S}\Gamma_B^{S\otimes S}=1$ determines the mass renormalization Z_m .

$$\Gamma_B^{S\otimes S}=Z_mZ_q$$

Scheme conditions for $V \otimes S$

 ${
m RI\text{-}SMOM}_{\gamma_{\mu}}$ scheme uses projectors the same as RI-MOM scheme.

$$\begin{split} & \Gamma^{V \otimes S}(\widetilde{\rho_{1}}, \widetilde{\rho_{2}})|_{sym} = 1 \quad (\mathrm{tree\ level}) \\ & = \frac{1}{48 \cdot 4} \sum_{\mu} \sum_{AB} \sum_{c_{1}c_{2}} [\widetilde{\Lambda}_{c_{1}c_{2}}^{V_{\mu} \otimes S}(\widetilde{\rho_{1}} + \pi_{A}, \widetilde{\rho_{2}} + \pi_{B}) \overline{(\overline{\gamma_{\mu}^{\dagger} \otimes 1})}_{BA} \delta_{c_{2}c_{1}}]_{sym} \end{split}$$

RI-SMOM scheme condition for the vector operator

$$\begin{split} & \Gamma^{V \otimes S}(\widetilde{\rho_{1}}, \widetilde{\rho_{2}})|_{sym} = 1 \quad (\mathrm{tree\ level}) \\ & = \frac{1}{48 \cdot \widetilde{q}^{2}} \sum_{\mu} \sum_{AB} \sum_{c_{1}c_{2}} [\widetilde{q}_{\mu} \widetilde{\Lambda}^{V_{\mu} \otimes S}_{c_{1}c_{2}}(\widetilde{\rho_{1}} + \pi_{A}, \widetilde{\rho_{2}} + \pi_{B}) \sum_{\nu} \widetilde{q}_{\nu} \overline{(\overline{\gamma^{\dagger}_{\nu} \otimes 1})}_{BA} \delta_{c_{2}c_{1}}]_{sym} \end{split}$$

and we also tried the substitution $\widetilde{q}a \to \sin(\widetilde{q}a)$. Renormalization factor of conserved vector current $Z_V=1$ and, $\Gamma^{V\otimes S}=Z_q^{-1}\Gamma_B^{V\otimes S}=1$ determines the wave function renormalization Z_q .

$$\Gamma_B^{V\otimes S}=Z_q$$

Simulation details

- $20^3 \times 64$ MILC asqtad lattice ($a \approx 0.12$ fm, $am_I/am_s = 0.01/0.05$)
- Landau gauge fixed, HYP smearing, tadpole improved
- 10 number of configurations
- 1 valence quark mass (0.05)
- 5 sets of *simple* symmetric external momenta in the units of $(\frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_t})$

\widetilde{p}_1	\widetilde{p}_2	$(a\tilde{p})^2$	$(a\tilde{p})^4$	GeV
(1,1,0,0)	(1,0,1,0)	0.1974	0.0195	0.7363
(2,2,0,0)	(2,0,2,0)	0.7896	0.3117	1.4727
(3,3,0,0)	(3,0,3,0)	1.7765	1.5780	2.2090
(4,4,0,0)	(4,0,4,0)	3.1583	4.9873	2.9454
(5,5,0,0)	(5,0,5,0)	4.9348	12.1761	3.6817

• 3 sets of *complicated* symmetric momenta

\widetilde{p}_1	\widetilde{p}_1	$ ilde{q}$	$(\widetilde{ap})^2$	$(a\widetilde{p})^4$	GeV
(1,2,3,0)	(-2,3,1,0)	(3,-1,2,0)	1.3817	0.9546	1.9482
(2,4,2,0)	(-2, 2, 4, 0)	(4,2,-2,0)	2.3687	2.8054	2.5508
(1,3,4,0)	(-3,4,1,0)	(4,-1,3,0)	2.5661	3.2924	2.6549

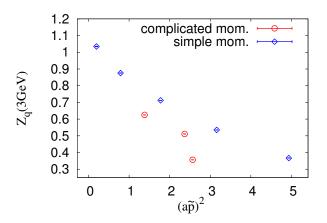


Figure : Z_q from conserved vector $(\gamma_{\mu} \otimes 1)$ operator in the $\text{RI-SMOM}_{\gamma_{\mu}}$ scheme

Z_q from various schemes

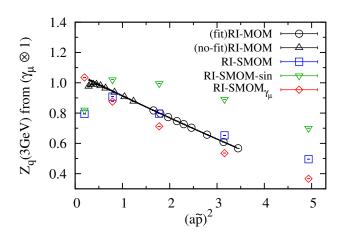


Figure : Z_q from conserved vector $(\gamma_\mu \otimes 1)$ operator at 3GeV in the various renormalization schemes

Z_m from various schemes

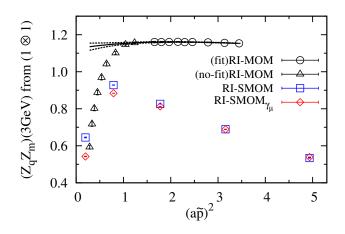


Figure : $Z_q \cdot Z_m$ from scalar (1 \otimes 1) operator at 3GeV in the various renormalization schemes

Part II

Gribov error for Z_q of staggered NPR in RI-MOM scheme

Gauge fixing functional

On the lattice, the gauge fixing functional F in terms of link variable $U_{\mu}(x)$,

$$F = \frac{1}{2N_C} \frac{1}{4V} \sum_{\mu,x} {
m Tr}[U_{\mu}(x) + U_{\mu}(x)^{\dagger}].$$

When the gauge is fixed, its variation w.r.t. gauge transformation $G(x) = e^{i\omega^a(x)T^a} \in SU(N_C)$,

$$\Delta(x) \equiv \frac{\delta F}{\delta \omega^a(x)} T^a \to 0.$$

In other words, the Landau gauge fixing condition is

$$\theta \equiv \frac{1}{N_C V} \sum_{x} \text{Tr}[\Delta(x) \Delta^{\dagger}(x)] = 0.$$

Gribov copy

- Gribov (1978) discovered that for non-abelian gauge theories, usual linear gauge conditions does not fix the gauge fields in a unique way.
- There can be two different configurations that both satisfy the gauge fixing condition, but related by nontrivial gauge transformation. Simply,

$$\{U\} \to \{U^{g1}\}, \{U^{g2}\}$$
 (1)

such that $\theta[U^{g1}] = \theta[U^{g2}] = 0$, but $F[U^{g1}] \neq F[U^{g2}]$.

- Gribov ambiguity can appear in the matrix elements between quark states:
 - Need gauge fixing.
 - Additional Gribov copy degree exists and that may appear in the result with statistical uncertainty.

Simulation detail

- $20^3 \times 64$ MILC asqtad lattice ($a \approx 0.12$ fm, $am_I/am_s = 0.01/0.05$)
- Landau gauge fixed, HYP smearing, tadpole improved
- 10 number of configurations
- 5 valence quark mass $(0.01 \sim 0.05)$
- ullet Use exceptional momenta $ilde{q}= ilde{p}_1- ilde{p}_2=0$ for RI-MOM scheme

Gribov effect of nonperturbative $Z_q^{ ext{RI-MOM}}$

$$F = rac{1}{2N_C} rac{1}{4V} \sum_{\mu,x} {
m Tr}[U_{\mu}(x) + U_{\mu}(x)^{\dagger}].$$

For each configuration (mother, with F_m),

- Generate 100 randomly transformed configuration.
- For all of them, run the gauge fixing (multi-GPU implemented Fourier accelerated steepest descent method algorithm) and calculate F.
- ② Pick the 1 configuration (daughter, one of the gribov copy with F_d) which maximizes $\delta F = |F_m F_d|$.
- Calculate $\tilde{Z}_q^{\text{RI-MOM}}$ from the daughter configuration.
- **⑤** Compare it to $Z_q^{\text{RI-MOM}}$ from the mother configuration.

Distribution of gauge fixed functional F

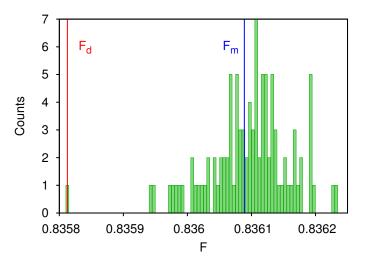


Figure : Histogram of 100 confs. generated from a single mother conf. of MILC asqtad coarse $20^3 \times 64$, $\beta = 6.76$ lattice.

Distribution of the daughter configurations

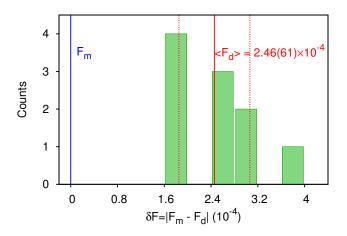
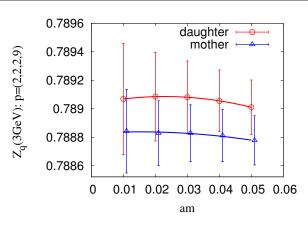


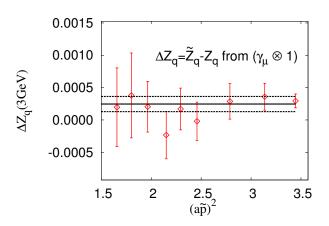
Figure: The distance between mother and daughter for the set of 10 configurations

Z_q chiral extrapolation in RI-MOM

$f = c_1 + c_2 am + c_3 (am)^2$	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	$\chi^2/d.o.f$
daughter	0.78903(49)	0.005(13)	-0.10(13)	0.00022(70)
mother	0.78883(37)	0.001(12)	-0.05(13)	0.0012(38)
difference	0.33σ			



$\Delta Z_q \equiv \widetilde{Z}_q - Z_q$ momentum fit in RI-MOM



- Fitting function: $f(m, a, \tilde{p}) = c_1 = 0.25(12) \times 10^{-3}$
- Fitting quality: $\chi^2/d.o.f = 0.38(42)$

Conclusion

- We studied NPR of the staggered bilinears in the RI-SMOM scheme. We plot
 the data points from the single valence quark mass. We will do the
 measurement for additional valence quark masses to do the chiral
 extrapolation.
- We observed that the Gribov error (ΔZ_q^{Gribov}) of staggered NPR with RI-MOM scheme is about 0.02%, and it is $\lesssim 1/20$ of the statistical error of the Z_q from NPR.

$Z_q(3\text{GeV}, \overline{\text{MS}})$	sys. error	stat. error	ΔZ_q^{Gribov} (3GeV, $\overline{\text{MS}}$)
1.0429	0.0243	0.0058	0.00024(12)

• Hence we may neglect the systematic error due to Gribov ambiguity.