Determining the scale in Lattice QCD

V. G. Bornyakov, R. Horsley, R. Hudspith, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, G. Schierholz, A. Schiller, H. Stüben and J. M. Zanotti

- QCDSF-UKQCD Collaboration -

Vladivostok - Edinburgh - Toronto - RIKEN (Kobe) - Leipzig - FZ (Jülich) - Liverpool - DESY - Hamburg - Adelaide

Lattice 2015, Kobe, Japan

Wednesday 15/7/15 404 15:20

Introduction	Approach	Lattice	Results	Conclusions
QCDSF r	elated talks with 2	+ 1 flavours:		

Jack Dragos

Improved Hadronic Matrix Element Determination Using the Variational Method

Paul Rakow

Dashen's theorem and electromagnetic contributions to pseudoscalar meson masses

Gerrit Schierholz

Light quark masses from infrared fixed point

Ross Young

Applications of the Feynman – Hellmann theorem in hadron structure

 Arwed Schiller Improving the lattice axial vector current

Tuesday 402 18:10

Tuesday 406 17:30

Thursday 403 8:30

Wednesday 404 17:30

Saturday 403 10:20

Introduction	Approach	Lattice	Results	Conclusions

Introduction

• attempt to determine Wilson flow scales

- strategy
- results

Introduction	Approach	Lattice	Results	Conclusions
QCDSI	⁼ strategy:			[arXiv:1102.5300]

eg 2 + 1 simulations: many paths to approach the physical point $[m_u = m_d \equiv m_l case]$

QCDSF: extrapolate from a point on the $SU(3)_F$ flavour symmetry line to the physical point

$$(m_0, m_0) \longrightarrow (m_l^*, m_s^*)$$

Choice here: keep the singlet quark mass \overline{m} constant

$$\overline{m}=m_0=\frac{1}{3}\left(2m_l+m_s\right)$$

Introduction	Approach	Lattice	Results	Conclusions

Strategy

[arXiv:1102.5300]

- Develop SU(3)_F flavour symmetry breaking expansion for masses, ...
- Expansion in: SU(3) flavour symmetric point $\delta m_q = 0$

$$\delta m_q = m_q - \overline{m}, \quad \overline{m} = \frac{1}{3}(m_u + m_d + m_s) = m_0$$

• trivial constraint

 $\delta m_u + \delta m_d + \delta m_s = 0$

Introduction	Approach	Lattice	Results	Conclusions

Here we shall:

• Consider a flavour singlet quantity

$X_S(m_u, m_d, m_s)$

- Invariant under *u*, *d*, *s* permutations (by definition)
- Simple property:

Stationary point about the SU(3) flavour symmetric line

Introduction Approach	Lattice	Results	Conclusions
-----------------------	---------	---------	-------------

Expanding a flavour singlet quantity about a point on the $SU(3)_F$ -flavour line:

$$X_{S}(\overline{m} + \delta m_{u}, \overline{m} + \delta m_{d}, \overline{m} + \delta m_{s}) = X_{S}(\overline{m}, \overline{m}, \overline{m}) + \frac{\partial X_{S}}{\partial m_{u}} \Big|_{0} \delta m_{u} + \frac{\partial X_{S}}{\partial m_{d}} \Big|_{0} \delta m_{d} + \frac{\partial X_{S}}{\partial m_{s}} \Big|_{0} \delta m_{s} + O((\delta m_{q})^{2})$$

On the symmetric line:

$$\frac{\partial X_S}{\partial m_u}\Big|_0 = \left.\frac{\partial X_S}{\partial m_d}\right|_0 = \left.\frac{\partial X_S}{\partial m_s}\right|_0,$$

Together with $\delta m_u + \delta m_d + \delta m_s = 0$ this implies that

 $X_{S}(\overline{m} + \delta m_{u}, \overline{m} + \delta m_{d}, \overline{m} + \delta m_{s}) = X_{S}(\overline{m}, \overline{m}, \overline{m}) + O((\delta m_{q})^{2})$

Introduction

Lattice

Singlet quantities I – hadronic – many possibilities

• Octet baryons: (centre of mass)

stable under QCD

$$\begin{aligned} X_N^2 &= \frac{1}{6} (M_p^2 + M_n^2 + M_{\Sigma^+}^2 + M_{\Sigma^-}^2 + M_{\Xi^0}^2 + M_{\Xi^-}^2) \\ &= (1.160 \, \text{GeV})^2 \end{aligned}$$

• Pseudoscalar mesons: (centre of mass)

$$X_{\pi}^{2} = \frac{1}{6}(M_{K^{+}}^{2} + M_{K^{0}}^{2} + M_{\pi^{+}}^{2} + M_{\pi^{-}}^{2} + M_{K^{0}}^{2} + M_{K^{-}}^{2}) \xrightarrow[\pi^{10}]{} (0.4116 \,\text{GeV})^{2}$$

- Vector mesons: (centre of mass) $X_{\rho}^{2} = \frac{1}{6}(M_{K^{*+}}^{2} + M_{K^{*0}}^{2} + M_{\rho^{+}}^{2} + M_{\rho^{-}}^{2} + M_{\overline{\nu}^{*0}}^{2} + M_{K^{*-}}^{2})$
- Some other possibilities

$$X_{S}^{2} = \begin{cases} \frac{1}{2}(M_{\Sigma}^{2} + M_{\Lambda}^{2}) & S = \Lambda \\ M_{\Sigma^{*}}^{2}, \frac{1}{2}(M_{\Delta}^{2} + M_{\Xi^{*}}^{2}) & S = \Sigma^{*}, \Delta \end{cases} \text{ baryon decuplet, unstable under QCD}$$

Introduction	Approach	Lattice	Results	Conclusions

Singlet quantities II - gluonic - many possibilities

• Force scale:

$$X_{r_0}^2 = rac{1}{r_0^2}$$

• Wilson flow scales:

$$X_{t_0}^2 = \frac{1}{t_0}$$

$$X_{w_0}^2 = rac{1}{w_0^2}$$

• 'Secondary scales', physical value has to be determined

Introduction Approach	Lattice	Results	Conclusions
-----------------------	---------	---------	-------------

Check I – SU(3) flavour breaking expansion — Gell-Mann–Okubo

eg pseudoscalar mesons:

$$\begin{split} & M_{\pi^+}^2 (= M_{\pi^-}^2) = M_{0\pi}^2 + \alpha_{\pi} (\delta m_u + \delta m_d) + O((\delta m_q)^2) \\ & M_{K^+}^2 (= M_{K^-}^2) = M_{0\pi}^2 + \alpha_{\pi} (\delta m_u + \delta m_s) + O((\delta m_q)^2) \\ & M_{K^0}^2 (= M_{K^0}^2) = M_{0\pi}^2 + \alpha_{\pi} (\delta m_d + \delta m_s) + O((\delta m_q)^2) \end{split}$$

$$\begin{aligned} X_{\pi}^{2} &= \frac{1}{6} (M_{K^{+}}^{2} + M_{K^{0}}^{2} + M_{\pi^{+}}^{2} + M_{\pi^{-}}^{2} + M_{K^{0}}^{2} + M_{K^{-}}^{2}) \\ &= M_{0\pi}^{2} + \alpha_{\pi} (\delta m_{u} + \delta m_{d} + \delta m_{s}) + O((\delta m_{q})^{2}) \\ &= M_{0\pi}^{2} + O((\delta m_{q})^{2}) \end{aligned}$$

 $M_{0\pi} \equiv M_{0\pi}(\overline{m}), \, \alpha_{\pi} \equiv \alpha(\overline{m}) \text{ only}$

Introduction	Approach	Lattice	Results	Conclusions

```
Check II – using \chi-PT
```

```
Choose your favourite \chi-PT result
```

Expand about a $SU(3)_F$ flavour symmetric point:

 $X_{S}(m_{u}, m_{d}, m_{s}) = X_{S}(\overline{m}, \overline{m}, \overline{m}) + O((\delta m_{q})^{2})$

eg Wilson flow scale: t_0

• Bär and Golterman [arXiv:1312.4999] derive 2 + 1 flavour expression: $[\mu_P = (M_P/4\pi f_0)^2 \ln(M_P/\mu)^2]$

$$t_{0} = t_{0,ch} \left[1 + \frac{k_{1}}{(4\pi f_{0})^{2}} (2M_{K}^{2} + M_{\pi}^{2}) + \frac{1}{(4\pi f_{0})^{2}} \left((3k_{2} - k_{1})M_{\pi}^{2}\mu_{\pi} + 4k_{2}M_{K}^{2}\mu_{K} + \frac{k_{1}}{3}(M_{\pi}^{2} - 4M_{K}^{2})\mu_{\eta} + k_{2}M_{\eta}^{2}\mu_{\eta} \right) + \frac{k_{4}}{(4\pi f_{0})^{4}} (2M_{K}^{2} + M_{\pi}^{2})^{2} + \frac{k_{5}}{(4\pi f_{0})^{4}} (M_{K}^{2} - M_{\pi}^{2})^{2} \right] [k_{1} \dots k_{5} \text{ parameters}]$$

Manipulate to give

$$t_0 = T(\overline{\chi}) \left[1 + \frac{1}{(4\pi f_0)^4} \left(\frac{5}{6} k_2 + \frac{1}{4} k_5^{\prime\prime} \right) \left(\frac{\chi_s - \chi_l}{\delta m_s - \delta m_l} \right)^2 + \cdots \right]$$

where

$$T(\overline{\chi}) = t_{0,ch} \left[1 + \frac{3k_1}{(4\pi f_0)^2} \overline{\chi} + \frac{8k_2}{(4\pi f_0)^4} \overline{\chi}^2 \ln \frac{\overline{\chi}}{\Lambda^2} + \frac{9k'_4}{(4\pi f_0)^4} \overline{\chi}^2 \right]$$
$$[\chi_l = B_0 m_l, \ \chi_s = B_0 m_s, \ \overline{\chi} = \frac{1}{3} (2\chi_l + \chi_s)]$$
• no linear term, first term is quadratic in the $SU(3)$ breaking

Introduction	Approach	Lattice	Results	Conclusions

Lattice

- O(a) NP improved clover action
 - tree level Symanzik glue
 - mildy stout smeared 2 + 1 clover fermion
 - $\beta = 5.40, 5.50, 5.65, 5.80 \ [24^3 \times 48, 32^3 \times 64, 48^3 \times 96]$

$$m_q = rac{1}{2} \left(rac{1}{\kappa_q} - rac{1}{\kappa_{0c}}
ight)$$

 κ_{0c} is chiral limit along symmetric line

$$\delta m_q = m_q - m_0 = \frac{1}{2} \left(\frac{1}{\kappa_q} - \frac{1}{\kappa_0} \right)$$

• typical $M_{\pi}^{lat 2}$ values

Approach

Lattice

Wilson Flow

[follows Lüscher arXiv:1006.4518]

$$\frac{dU_{\mu}(x,t)}{dt} = -\frac{\delta S_{\text{flow}}[U]}{\delta U_{\mu}(x,t)} U_{\mu}(x,t), \quad \text{with } U_{\mu}(x,0) = U_{\mu}(x)$$

• Observable:

 $F(t) \equiv t^2 \langle E(t) \rangle$, where $E(t) = \frac{1}{4} F_{\mu\nu}^{a\,2}(t)$

• $\sqrt{t_0}$:

 $\left.F(t)\right|_{t=t_0(c)}=c$

*w*₀:

[BMW arXiv:1203.4469]

$$\left. t \frac{d}{dt} F(t) \right|_{t=w_0^2(c)} = c$$

c = 0.3 [conventional]

• Discretisation:

(flow, gauge action, observable) = (Wilson, Symanzik [tree level], Clover)

Runge-Kutta for flow equation

Introduction	Approach	Lattice	Results	Conclusions

Improved scaling behaviour: $O(a^2)$ terms

• eg $\sqrt{t_0}$:

$$\left.\frac{F(t)}{1+C_2\frac{a^2}{t}+\dots}\right|_{t=t_0\operatorname{imp}(c)} = c \quad \Rightarrow \quad t_0\operatorname{imp} = t_0\left(1+C_2\frac{F_0}{F_0'}\frac{a^2}{t_0}+\dots\right)$$

• invert, relabel
$$t_{0\,\mathrm{imp}}
ightarrow t_{0\,\mathrm{cont}}$$

[MILC arXiv:1503.02769]

$$t_0 = t_{0 ext{ cont}} \left(1 - C_2 rac{F_{0 ext{ cont}}}{F_{0 ext{ cont}}'} rac{a^2}{t_{0 ext{ imp}}} + \ldots
ight)$$

 $[F_x = F(t_x), F'_x = tdF(t)/dt|_{t_x}, \text{ where } x = 0 \text{ or } 0 \text{ cont }]$ • at tree level for $(fgo) = (WSC), C_2 = -7/72$ [Fodor et al arXiv:1406.0827]

so expect gradient to be +ve

Lattice

X_S^2 determination I:

•
$$\beta = 5.80, \ \kappa_0 = 0.122810$$

• $X_{t_0}^2$, $X_{w_0}^2$, X_{π}^2 , X_{ρ}^2 , $X_N^2 \approx X_{\Lambda}^2$ along the $\overline{m} = \text{const.}$ line

[in plot $M_\pi \sim 420$ MeV - 275 MeV]

Lattice

X_S^2 determination II:

- β = 5.50, κ₀ = 0.120900
- $X^2_{t_0}$, $X^2_{w_0}$, X^2_{π} , X^2_{ρ} , $X^2_N \approx X^2_{\Lambda}$ along the $\overline{m} = \text{const.}$ line

[in plot $M_\pi \sim 460 \text{ MeV} - 225 \text{ MeV}$]

Introduction	Approach	Lattice	Results	Conclusions

Alternatively:

• we have

$$\frac{X_{\pi}^2}{X_s^2} = \frac{2M_{K} + M_{\pi}^2}{X_s^2}$$

giving

for $S = N, \rho, t_0, w_0$

Lattice

Results

Conclusions

Path in quark mass plane I:

Lattice

Results

Conclusions

Path in quark mass plane II:

Introduction	Approach	Lattice	Results	Conclusions
Conclusi	on:			

- Conclusion:
 - Results for $\beta = 5.80 5.40$ and a variety of κ_0
 - All constant Gell-Mann–Okubo

Goal:

• Use X_S^{exp} to determine scale

$$a_S^2 = \frac{X_S^{lat\,2}}{X_S^{exp\,2}}$$

Vary κ₀ – when pairs a_S, a_{S'} cross gives common lattice spacing a
apply in particular to

 $(\pi, N), (\pi, \rho)$

Introduction	Approach	Lattice	Results	Conclusions

Crossing of X_S^2 I:

• β = 5.80

Introduction Approach Lattice Results Conclusions

Crossing of X_S^2 II:

• β = 5.50

Introduction	Approach	Lattice	Results	Conclusions

Conclusion:

• Determination of (κ_0, a) for $\beta = 5.80 - 5.40$

Goal:

- Use these crossings to match to X_{t_0} and X_{w_0}
- eg

$$w_0^{\exp 2} \equiv \frac{1}{X_{w_0}^{\exp 2}} = \frac{a^2}{X_{w_0}^{lat\,2}}$$

• determines
$$\sqrt{t_0^{\exp}}$$
, w_0^{\exp} $(n_f = 2 + 1)$

Crossing of X_S^2 with X_{t_0} , X_{w_0} I:

• only consider (π, N) here

Introduction

Crossing of X_5^2 with $X_{t_0}^2$, $X_{w_0}^2$ II:

• only consider (π, N) here

Introduction	Approach	Lattice	Results	Conclusions

Continuum extrapolation: (π, N)

Introduction	Approach	Lattice	Results	Conclusions

Continuum extrapolation: (π, ρ)

|--|

Comparison with other $n_f = 2 + 1$ results

[BMW 12 arXiv:1203.4469; HotQCD 14 arXiv:1407.6387]

- weighted average: $\sqrt{t_0^{\exp}} \sim 0.149(2)(?) \, {
 m fm}, \, w_0^{\exp} \sim 0.178(2)(?) \, {
 m fm}$
- preliminary, presently only statistical errors
- *n_f* dependence?

Introduction	Approach	Lattice	Results	Conclusions

Conclusions

• Programme:

Tune strange and light quark masses to their physical values simultaneously by keeping

$$\overline{m} = \frac{1}{3} (2m_l + m_s) = \text{const.}$$

- *M*_π ∖; *M*_K ∕*
- X_S(κ₀) (singlet quantities) remain constant from SU(3) flavour symmetric line — Gell-Mann–Okubo
 - Use X_S^{exp} to determine $a_S(\kappa_0)$ scale
 - Vary κ_0 determine when (X_{π}, X_N) , (X_{π}, X_{ρ}) cross (common *a*)
 - Arrange so X_{t_0} , X_{w_0} also cross here determines $\sqrt{t_0^{exp}}$, w_0^{exp} [fm]