Introduction	Method	Results	Conclusion

Radial distributions of the axial density and the $B^{*'}B\pi$ coupling

Antoine Gérardin

In collaboration with Benoit Blossier

1

July 17, 2015 - Kobe - LATTICE 15

Introduction	Method	Results	Conclusion
Introduction			

- Radial distributions of the axial density $(\bar{q}\gamma_{\mu}\gamma_{5}q)$ in a heavy-light meson $(Q\bar{q})$
- \bullet We work in the static limit of HQET: the heavy quark (Q) is static
- Ground states (B, B^*) and excited states $(B', B^{*\prime})$ analysis
- Motivations

 \rightarrow the radial distributions are related to the form factors associated to the $g_{B^*B\pi}$ and $g_{B^{*'}B\pi}$ (via a Fourier transform) couplings

- \rightarrow understand the hierarchy of the couplings (in particular why $|g_{12}| < g_{11}$) where $g_{mn} = \langle B_m^0(\vec{0}) | A_k(0) | B_n^{*+}(\vec{0},\lambda) \rangle$
- ightarrow insights on volume effects
- ightarrow comparison with quark models
- Lattice setup:
 - $N_f = 2 \ O(a)$ improved Wilson-Clover Fermions
 - HYP2 discretization for the static quark action
 - 3 lattice spacings a :
 - (0.048, 0.065, 0.075) < 0.1 fm
 - pion masses in the range [280 MeV, 440 MeV]

CLS based

Introduction	Method	Results	Conclusion
Definition			

 $\bullet\,$ The radial distributions of the axial current are defined by $(n,m=1,2,\ldots)$:

• We need to compute the following matrices of two and three-point correlation functions

$$C^{(3)}_{\gamma_{\mu}\gamma_{5},ij}(t,t_{1};\vec{r}) = \langle \mathcal{P}^{(j)}(t;\vec{x}) \mathcal{A}_{\mu}(t_{1};\vec{x}+\vec{r}) \mathcal{V}^{(i)\dagger}_{k}(0;\vec{x}) \rangle,$$

$$C^{(2)}_{\mathcal{P},ij}(t) = \langle \mathcal{P}^{(i)}(t) \mathcal{P}^{(j)\dagger}(0) \rangle \quad , \quad C^{(2)}_{\mathcal{V},ij}(t) = \langle \mathcal{V}^{(i)}(t) \mathcal{V}^{(j)\dagger}(0) \rangle$$

 \longrightarrow The pseudoscalar $\mathcal{P}^{(i)}$ and vector $\mathcal{V}^{(i)}$ interpolators correspond to different levels of Gaussian smearing

$$\mathcal{R}_{\gamma_{\mu}\gamma_{5}}(t,t_{1},\vec{r}) = \frac{C_{\gamma_{\mu}\gamma_{5},ij}^{(3)}(t,t_{1};\vec{r})}{\left(C_{\mathcal{P},ii}^{(2)}(t) \ C_{\mathcal{V},jj}^{(2)}(t)\right)^{1/2}} \xrightarrow[t\gg t_{1}\gg 1]{} f_{\gamma_{\mu}\gamma_{5}}^{(11)}(\vec{r}) = \langle B|A_{\mu}(\vec{r})|B^{*}(\lambda)\rangle$$

• GEVP estimator [Bulava et. al, '11]

4

$$\mathcal{R}_{mn}^{\text{GEVP}}(t,t_1;\vec{r}) = \left(v_m(t_2), C_{\gamma_\mu\gamma_5}^{(3)}(t_1+t_2,t_1;\vec{r})w_n(t_1)\right) \times \frac{\lambda_m(t_2+1)^{-t_2/2} \lambda_n(t_1+1)^{-t_1/2}}{\left(v_m(t_2), C_{\mathcal{P}}^{(2)}(t_2)v_m(t_2)\right)^{1/2} \left(w_n(t_1), C_{\mathcal{V}}^{(2)}(t_1)w_n(t_1)\right)^{1/2}}$$

 \longrightarrow This method allows us to extract the radial distributions involving excited states

$$\mathcal{R}_{mn}^{\text{GEVP}}(t,t_1;\vec{r}) = f_{\gamma_{\mu}\gamma_5}^{(mn)}(\vec{r}) + \mathcal{O}\left(e^{-\Delta_{N+1,m}t_2}, e^{-\Delta_{N+1,n}t_1}\right) \quad , \quad \Delta_{N+1,n} = E_{N+1} - E_n$$

 \rightarrow The three point correlation function is evaluated at $t = t_1 + t_2$ which may be difficult (statistical noise)

• Improved sGEVP estimators [Bulava et. al, '11] (the 3-pt correlation function is summed over the insertion time t_1)

$$\mathcal{R}_{mn}^{\text{sGEVP}}(t,t_0;\vec{r}) = -\partial_t \left(\frac{\left| \left(v_m(t,t_0), \left[\frac{K(t,t_0;\vec{r})}{\tilde{\lambda}_n(t,t_0)} - K(t_0,t_0;\vec{r}) \right] w_n(t,t_0) \right) \right|}{\left(v_m(t,t_0), C_{\mathcal{P}}^{(2)}(t_0) v_m(t,t_0) \right)^{1/2} \left(w_n(t,t_0), C_{\mathcal{V}}^{(2)}(t_0) w_n(t,t_0) \right)^{1/2}} e^{\Sigma_{mn}(t_0,t_0)t_0/2} \right)$$

where
$$K_{ij}(t, t_0; \vec{r}) = \sum_{t_1} e^{-(t-t_1)\Sigma(t,t_0)} C_{ij}^{(3)}(t, t_1; \vec{r})$$
, $\Sigma_{mn}(t, t_0) = E_n(t, t_0) - E_m(t, t_0)$

 \rightarrow Faster suppression of higher excited states contribution [Blossier et. al, '13]

$$\mathcal{R}_{mn}^{\text{sGEVP}}(t, t_0; \vec{r}) = f_{\gamma_\mu \gamma_5}^{(mn)}(\vec{r}) + \mathcal{O}\left(e^{-\Delta_{N+1,n}t}\right) \qquad m < n$$

 \rightarrow Need to evaluate the three-point correlation function up to t only: better signal

Meth

Results

Spatial component of the radial distributions: raw data

5

$$f_{\gamma_i\gamma_5}^{(mn)}(\vec{r}) = \langle B_m | A_i(\vec{r}) | B_n^*(\lambda) \rangle$$

• E5 : a = 0.065 fm and $m_{\pi} = 440$ MeV

- #r = 969 2925 for L/a = 32 48 respectively
- node for excited states
- exponential fall-off
- "fishbone" structure at large radii
- preliminary results

Introduction	Method	Results	Conclusion
Volume effects			

Lattice with periodic boundary conditions in space directions [Negele, '94]

$$a^3 f_{\gamma_i \gamma_5}^{\text{lat}}(\vec{r}) = \sum_{\vec{n}} a^3 \widetilde{f}_{\gamma_i \gamma_5}(\vec{r} + \vec{n}L) \quad , \quad n_i \in \mathbb{Z} \,,$$

Two kind of volume effects are expected:

- $f_{\gamma_i \gamma_5}^{\text{lat}}(\vec{r})$ is the sum of all periodic images contributions
- $\tilde{f}_{\gamma_i\gamma_5}(\vec{r})$ can still differ from the infinite volume distribution $f_{\gamma_i\gamma_5}(\vec{r})$ due to interactions with periodic images

•
$$L/a = 32$$

• $r^2 f^{11}_{\gamma_i \gamma_5}(\vec{r}) \neq 0$ for $r = L/2 \implies$ overlap of the tails
 \Rightarrow "fishbone" structure

• We neglect interactions with periodic images $\Rightarrow \tilde{f}_{\gamma_i\gamma_5}(\vec{r}) \approx f_{\gamma_i\gamma_5}(\vec{r}) \text{, even in the overlap region}$

To remove these volume effects, we assume a functional form and fit the data with

$$f_{\gamma_i \gamma_5}^{(mn)}(\vec{r}) = P_{mn}(r) r^{\beta} \exp\left(-r/r_0\right) ,$$

where $P_{mn}(r)$ is a polynomial function

6

Antoine Gérardin

Do not affect the computation of the couplings g_{mn} or form factors (as long as the distribution vanishes for r > L)
 → the contribution coming from periodic images compensates exactly the missing part of the tail for r > L/2.

- However, it affects quantities like $\langle r^2 \rangle_A$
- We have made the assumption that the tail of the distribution is not distorted by interactions:

Antoine Gérardin

LATTICE 15 - Radial distributions of the axial density and the $B^{*'}B\pi$ coupling

Method

Results

Vector distributions and extraction of Z_V

• The vector (or charge) radial distributions are defined similarly by $(\gamma_{\mu}\gamma_{5}\leftrightarrow\gamma_{0})$

$$f_{\gamma_0}^{(mn)}(\vec{r}) = \langle B(\vec{p}) | \left(\overline{\psi}_l \gamma_0 \psi_l \right) (\vec{r}) | B(\vec{p}') \rangle,$$

• Results for E5 ($m_{\pi} = 440 \text{ MeV}$, a = 0.065 fm)

 $\bullet\,$ Sum the vector radial distributions over all values of \vec{r} :

8

$c_{mn} = \sum f^{(mn)}(\vec{r})$	m	n	11	22	12	23
\vec{r}	c_n	nn	1.311(17)	1.212(52)	0.015(32)	-0.010(35)
ightarrow Charge (vector current) conservation	$Z_V c_{11} =$	1	$\Rightarrow Z_V =$	= 0.763(12)	at $\beta=5.3$	

 \rightarrow Close to the non-perturbative estimate $Z_V = 0.750(5)$ from the ALPHA Collaboration [DellaMorte, '05] [Fritzsch, '12] $\rightarrow c_{12}$ and c_{23} are compatible with zero: the GEVP safely isolates the ground state and first excited state

The sum over r of the spatial component of the radial distributions gives the form factor at $q^2 = q_{\text{max}}^2 = m_{B_m^*} - m_{B_n}$

$$g_{mn} = \sum_{\vec{r}} f_{\gamma_i \gamma_5}^{(mn)}(\vec{r}) = \langle B_m^0(\vec{0}) | A_k(0) | B_n^{*+}(\vec{0},\lambda) \rangle$$

The renormalized $\mathcal{O}(a)$ -improved couplings are then given by

$$\overline{g}_{mn} = Z_A(1 + b_A a m_q) g_{mn}$$

 \rightarrow Z_A is the light axial vector current renormalisation constant [DellaMorte et. al, '08] [Fritzsch et. al, '12] \rightarrow b_A is an improvement coefficient

$$\tilde{y}=m_\pi^2/(8\pi^2 f_\pi^2)$$

Extrapolations to the physical point :

(preliminary, only naive extrapolations)

• The results are perfectly compatible with previous lattice calculation [Bernardoni et. al, '14] [Blossier et. al, '13] • $g_{11} = \hat{g}$ is related to the $g_{B^*B\pi}$ coupling in the static limit $(q_{\max}^2 \approx 0)$

• For
$$g_{12}$$
 we have $q_{\max}^2 = m_{B^{*\prime}} - m_B \neq 0$

Introduction	Method		Results	Conclusion
Properties of	the radial distributions			
 First moment 	of the ground state radial dist	tributions (squ	are radius)	
	$\int_{-\infty}^{\infty} \mathrm{d}r r^4 f_{\Gamma}^{(11)}(r)$	$\Gamma = 1$: $\langle r^2 \rangle_M = 0.215(9) \text{ fm}^2$	
$\langle r^2 angle$	$\Gamma = \frac{\int_0^{\infty} f^{\infty}(11)}{\int_0^{\infty} f^{\infty}(11)}$	$\Gamma = \gamma_0$: $\langle r^2 \rangle_C = 0.345(6) \text{ fm}^2$	(preliminary)
	$\int_{0} dr r^{2} f_{\Gamma}^{(11)}(r)$	$\Gamma = \gamma_i \gamma_5$: $\langle r^2 \rangle_A = 0.254(6) \text{ fm}^2$	

 $\langle r^2 \rangle_M < \langle r^2 \rangle_A < \langle r^2 \rangle_C$

- $g_{12} \ll g_{11} = \hat{g}$ can be understood by the presence of a node for the excited state
- Position of the node for $f_{\gamma_i\gamma_5}^{(12)}(\vec{r}) = \langle B|A_i(\vec{r})|B^{*\prime}(\lambda) \rangle$

	a = 0.075 fm		a = 0.065 fm		$a=0.048~{\rm fm}$
m_{π}	$330 { m MeV}$	$280 { m MeV}$	440 MeV	$310 { m MeV}$	$340 { m MeV}$
r_n [fm]	0.371(6)	0.369(6)	0.369(4)	0.371(3)	0.358(4)

ightarrow no dependance on the lattice spacing / pion mass at our level of precision

 \rightarrow indication that our results for excited state $\left(f_{\gamma_i\gamma_5}^{(12)}(\vec{r})\right)$ are safe from multi-hadron thresholds $(B_1^*\pi)$

Introduction	Method	Results	Conclusion
The $g_{B^{st} B \pi}$ coupling			

• The coupling is defined by the following on-shell matrix element

$$\langle B(p') \pi^+(q) | B^{*\prime}(p', \epsilon^{(\lambda)}) \rangle = -g_{B^{*\prime}B\pi} \times q_{\mu} \epsilon^{\mu}(p')$$
Pseudoscalar *B* meson
Radially excited vector *B*^{*'} meson

• Using the LSZ reduction and the PCAC relation, we are left with the following matrix element which can be computed on the lattice:

$$q^{\mu} \langle B^{0}(p) | A_{\mu}(0) | B^{*'+}(p+q) \rangle = g_{B^{*'}B\pi} (\epsilon \cdot q) \times \frac{f_{\pi}m_{\pi}^{2}}{m_{\pi}^{2} - q^{2}} + \dots$$

- On the lattice with static heavy quarks: zero recoil kinematic configuration $(\vec{p} = \vec{p}' = \vec{0})$
 - \rightarrow Simulations correspond to $q^2=q^2_{\rm max}=(m_{B^{*\prime}}-m_B)^2\neq 0$ (far from the chiral limit)
 - \rightarrow One should extrapolate the form factor to $q^2 = 0$ by taking the Fourier transform of the radial distribution [Becirevic et al. (2012)]
 - \rightarrow Requires the knowledge of the spatial component $f_{\gamma_i\gamma_5}^{(12)}(\vec{r})$ but also of the time component $f_{\gamma_0\gamma_5}^{(12)}(\vec{r})$
 - ightarrow We are now computing the time component $f^{(12)}_{\gamma_0\gamma_5}(ec{r})$

Introduction	Method	Results	Conclusion
Conclusion			

- We have computed the radial distributions of the axial vector density for the ground state and first excited state
 - \longrightarrow We use the GEVP and improved estimators to reduce the statistical noise
 - \longrightarrow We have checked the GEVP results on the radial distributions of the vector density (Z_V)
 - \longrightarrow We have five lattice ensembles to study discretization and quark mass effects
 - \longrightarrow Volume effects seems negligible at our level of precision
- Results are still preliminary
- The next step is to compute the time component of the axial vector distribution: $f_{\gamma_0\gamma_5}^{(mn)}(\vec{r})$ $\rightarrow g_{B^{*'}B\pi}$ coupling at $q^2 = 0$ (Fourier transform of the distribution)

Introduction	Method	Results	Conclusion
Conclusion			

- We have computed the radial distributions of the axial vector density for the ground state and first excited state
 - \longrightarrow We use the GEVP and improved estimators to reduce the statistical noise
 - \longrightarrow We have checked the GEVP results on the radial distributions of the vector density (Z_V)
 - \longrightarrow We have five lattice ensembles to study discretization and quark mass effects
 - \longrightarrow Volume effects seems negligible at our level of precision
- Results are still preliminary
- The next step is to compute the time component of the axial vector distribution: $f_{\gamma_0\gamma_5}^{(mn)}(\vec{r})$ $\rightarrow g_{B^{*'}B\pi}$ coupling at $q^2 = 0$ (Fourier transform of the distribution)

Thank you

Introduction	Method	Results	Conclusion
Smearing			

• Gaussian smearing on the light quark field ψ_l is used to reduce the contamination of excited states:

$$\psi_l^{(i)}(x) = \left(1 + \kappa_G a^2 \Delta\right)^{R_i} \psi_l(x)$$

- It is applied on the contraction with the heavy-quark propagator but not on the probe which must stay local.
- The time t is chosen such that the radial distributions has reached a plateau:

$$\mathcal{R}_{\gamma_{\mu}\gamma_{5}}(t,t_{1},\vec{r}) = \frac{C_{\gamma_{\mu}\gamma_{5},ij}^{(3)}(t,t_{1};\vec{r})}{\left(C_{\mathcal{P},ii}^{(2)}(t) \ C_{\mathcal{V},jj}^{(2)}(t)\right)^{1/2}} \xrightarrow[t \gg t_{1} \gg 1]{} f_{\gamma_{\mu}\gamma_{5}}^{(11)}(\vec{r}) = \langle B|A_{\mu}(\vec{r})|B^{*}(\lambda)\rangle,$$

13

LATTICE 15 - Radial distributions of the axial density and the $B^{*\prime}B\pi$ coupling

Introduction	Method	Results	Conclusion
Multi-hadron threshold			

- Within our lattice setup, the radial excitation of the vector B meson lies near the multi-particles threshold $B_1^*\pi$
- The mass of the axial B meson in the static limit is extracted from our previous study [Blossier et al. (2014)]
- We assume that the mass of the two particle state is simply given by $E_{B_1^*\pi}=m_{B_1^*}+m_\pi$

CLS	$am_{B^{*'}} - am_B$	$\left(am_{B_1^*} - am_B\right) + am_{\pi}$
A5	0.253(7)	0.281(4)
B6	0.235(8)	0.248(4)
E5	0.225(10)	0.278(6)
F6	0.213(11)	0.233(3)
N6	0.166(9)	0.176(3)

 \longrightarrow All lattice ensembles are near but bellow threshold

 \rightarrow The position of the node is remarkably stable and does not depend on the pion mass contrary to what would be expected in the case of a mixing with the multi-particle state

 \longrightarrow Indication that our results are safe from multi-hadron thresholds

Antoine Gérardin