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Introduction

Radial distributions of the axial density (qγµγ5q) in a heavy-light meson (Qq)

We work in the static limit of HQET: the heavy quark (Q) is static

Ground states (B, B∗) and excited states (B′, B∗′) analysis

Motivations

→ the radial distributions are related to the form factors associated to the gB∗Bπ and gB∗′Bπ (via a Fourier
transform) couplings

→ understand the hierarchy of the couplings (in particular why |g12| < g11) where gmn = 〈B0
m(~0)|Ak(0)|B∗+n (~0, λ)〉

→ insights on volume effects

→ comparison with quark models

Lattice setup:

- Nf = 2 O(a) improved Wilson-Clover Fermions

- HYP2 discretization for the static quark action

- 3 lattice spacings a :

(0.048, 0.065, 0.075) < 0.1 fm

- pion masses in the range [280 MeV, 440 MeV]
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Definition

The radial distributions of the axial current are defined by (n,m = 1, 2, ...) :

f (mn)
γµγ5 (~r) = 〈Bm|Aµ(~r)|B∗n(λ) 〉 , Bn = nth radial excitation

t1

t

Aµ(~x+ ~r, t1)

(~x, 0) , γ5 γi , (~x, t)

r The axial current Aµ = qγµγ5q (probe)
is inserted at a distance r from the heavy
quark Q

We need to compute the following matrices of two and three-point correlation functions

C
(3)
γµγ5,ij

(t, t1;~r) = 〈 P(j)(t; ~x)Aµ(t1; ~x+ ~r)V(i)†
k (0; ~x) 〉 ,

C
(2)
P,ij(t) = 〈 P(i)(t)P(j)†(0) 〉 , C

(2)
V,ij(t) = 〈 V(i)(t)V(j)†(0) 〉

−→ The pseudoscalar P(i) and vector V(i) interpolators correspond to different levels of Gaussian smearing

Rγµγ5(t, t1, ~r) =
C

(3)
γµγ5,ij

(t, t1;~r)
(
C

(2)
P,ii(t) C

(2)
V,jj(t)

)1/2
−−−−−→
t�t1�1

f (11)
γµγ5(~r) = 〈B|Aµ(~r)|B∗(λ) 〉
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Method: lattice computation

To isolate the contribution of excited states :

−→ solve the Generalized Eigenvalue Problem
−→ basis: N = 3 interpolating operators

C
(2)
P (t) vn(t, t0) = λn(t, t0)C

(2)
P (t0) vn(t, t0)

C
(2)
V (t)wn(t, t0) = λ̃n(t, t0)C

(2)
V (t0)wn(t, t0)
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GEVP estimator [Bulava et. al, ’11]

RGEVP
mn (t, t1;~r) =

(
vm(t2), C(3)

γµγ5(t1 + t2, t1;~r)wn(t1)
)
× λm(t2 + 1)−t2/2 λ̃n(t1 + 1)−t1/2
(
vm(t2), C

(2)
P (t2)vm(t2)

)1/2 (
wn(t1), C

(2)
V (t1)wn(t1)

)1/2

−→ This method allows us to extract the radial distributions involving excited states

RGEVP
mn (t, t1;~r) = f (mn)

γµγ5 (~r) +O
(
e−∆N+1,mt2 , e−∆N+1,nt1

)
, ∆N+1,n = EN+1 − En

−→ The three point correlation function is evaluated at t = t1 + t2 which may be difficult (statistical noise)
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Method: lattice computation

To isolate the contribution of excited states :

−→ solve the Generalized Eigenvalue Problem
−→ basis: N = 3 interpolating operators

C
(2)
P (t) vn(t, t0) = λn(t, t0)C

(2)
P (t0) vn(t, t0)

C
(2)
V (t)wn(t, t0) = λ̃n(t, t0)C
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Improved sGEVP estimators [Bulava et. al, ’11] (the 3-pt correlation function is summed over the insertion time t1)

RsGEVP
mn (t, t0;~r) = −∂t




∣∣∣
(
vm(t, t0),

[
K(t, t0;~r)/λ̃n(t, t0)−K(t0, t0;~r)

]
wn(t, t0)

)∣∣∣
(
vm(t, t0), C

(2)
P (t0)vm(t, t0)

)1/2 (
wn(t, t0), C

(2)
V (t0)wn(t, t0)

)1/2
eΣmn(t0,t0)t0/2




where Kij(t, t0;~r) =
∑

t1

e−(t−t1)Σ(t,t0)C
(3)
ij (t, t1;~r) , Σmn(t, t0) = En(t, t0)− Em(t, t0)

−→ Faster suppression of higher excited states contribution [Blossier et. al, ’13]

RsGEVP
mn (t, t0;~r) = f (mn)

γµγ5 (~r) +O
(
e−∆N+1,nt

)
m < n

−→ Need to evaluate the three-point correlation function up to t only: better signal
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Spatial component of the radial distributions: raw data
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f (mn)
γiγ5

(~r) = 〈Bm|Ai(~r)|B∗n(λ) 〉

E5 : a = 0.065 fm and mπ = 440 MeV

#r = 969− 2925 for L/a = 32− 48 respectively

node for excited states

exponential fall-off

“ fishbone” structure at large radii

preliminary results

Antoine Gérardin 5 LATTICE 15 - Radial distributions of the axial density and the B∗′Bπ coupling



Introduction Method Results Conclusion

Volume effects

Lattice with periodic boundary conditions in space directions [Negele, ’94]

a3f lat
γiγ5(~r) =

∑

~n

a3f̃γiγ5(~r + ~nL) , ni ∈ Z ,

Two kind of volume effects are expected:

f lat
γiγ5(~r) is the sum of all periodic images contributions

f̃γiγ5(~r) can still differ from the infinite volume distribution fγiγ5(~r) due to interactions with periodic images
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L/a = 32

r2f11
γiγ5(~r) 6= 0 for r = L/2 ⇒ overlap of the tails

⇒ “ fishbone” structure

We neglect interactions with periodic images

⇒ f̃γiγ5(~r) ≈ fγiγ5(~r) , even in the overlap region

To remove these volume effects, we assume a functional form and fit the data with

f (mn)
γiγ5 (~r) = Pmn(r) rβ exp (−r/r0) ,

where Pmn(r) is a polynomial function
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Volume effects: results for E5 (a = 0.065 fm and mπ = 440 MeV)
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Do not affect the computation of the couplings gmn or form factors (as long as the distribution vanishes for r > L)

→ the contribution coming from periodic images compensates exactly the missing part of the tail for r > L/2.

However, it affects quantities like 〈r2〉A

We have made the assumption that the tail of the distribution is not distorted by interactions:

Test volume effects on a new ensemble:





− Same β (a = 0.065 fm)

− Same pion mass (mπ = 440 MeV)

− Smaller volume :

L/a = 24 instead of 32
0
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fit the smaller volume ensemble
(L/a = 24) using the same fit
parameters (L/a = 32)

−→ the deformation of the tail is
negligible at our level of precision
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Vector distributions and extraction of ZV

The vector (or charge) radial distributions are defined similarly by (γµγ5 ↔ γ0)

f (mn)
γ0 (~r) = 〈B(~p)|

(
ψlγ0ψl

)
(~r)|B(~p ′)〉 ,

Results for E5 (mπ = 440 MeV, a = 0.065 fm)
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Sum the vector radial distributions over all values of ~r :

cmn =
∑

~r

f (mn)
γ0 (~r)

mn 11 22 12 23

cmn 1.311(17) 1.212(52) 0.015(32) −0.010(35)

→ Charge (vector current) conservation ZV c11 = 1 ⇒ ZV = 0.763(12) at β = 5.3

→ Close to the non-perturbative estimate ZV = 0.750(5) from the ALPHA Collaboration [DellaMorte, ’05] [Fritzsch, ’12]

→ c12 and c23 are compatible with zero: the GEVP safely isolates the ground state and first excited state
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Sum rules : g11, g12 and g22

The sum over r of the spatial component of the radial distributions gives the form factor at q2 = q2
max = mB∗m −mBn

gmn =
∑

~r

f (mn)
γiγ5 (~r) = 〈B0

m(~0)|Ak(0)|B∗+n (~0, λ)〉

The renormalized O(a)-improved couplings are then given by

gmn = ZA(1 + bAamq) gmn

→ ZA is the light axial vector current renormalisation constant [DellaMorte et. al, ’08] [Fritzsch et. al, ’12]
→ bA is an improvement coefficient
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g11
β = 5.2
β = 5.3
β = 5.5

ỹ = m2
π/(8π

2f2
π)

Extrapolations to the physical point :

→ g11 = 0.499(24)(?)

→ g12 = −0.161(45)(?)

→ g22 = 0.363(38)(?)

(preliminary, only naive extrapolations)

The results are perfectly compatible with previous lattice calculation [Bernardoni et. al, ’14] [Blossier et. al, ’13]
g11 = ĝ is related to the gB∗Bπ coupling in the static limit (q2

max ≈ 0)
For g12 we have q2

max = mB∗′ −mB 6= 0
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Properties of the radial distributions

First moment of the ground state radial distributions (square radius)

〈r2〉Γ =

∫ ∞

0
dr r4 f

(11)
Γ (r)

∫ ∞

0
dr r2 f

(11)
Γ (r)

Γ = 1 : 〈r2〉M = 0.215(9) fm2

Γ = γ0 : 〈r2〉C = 0.345(6) fm2

Γ = γiγ5 : 〈r2〉A = 0.254(6) fm2

(preliminary)

〈r2〉M < 〈r2〉A < 〈r2〉C

g12 � g11 = ĝ can be understood by the presence of a node for the excited state

Position of the node for f (12)
γiγ5(~r) = 〈B|Ai(~r)|B∗′(λ) 〉

a = 0.075 fm a = 0.065 fm a = 0.048 fm

mπ 330 MeV 280 MeV 440 MeV 310 MeV 340 MeV

rn [fm] 0.371(6) 0.369(6) 0.369(4) 0.371(3) 0.358(4)

→ no dependance on the lattice spacing / pion mass at our level of precision

→ indication that our results for excited state
(
f

(12)
γiγ5(~r)

)
are safe from multi-hadron thresholds (B∗1π)
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The gB∗′Bπ coupling

The coupling is defined by the following on-shell matrix element

〈
B(p′)π+(q) |B∗′(p′, ε(λ))

〉
= −gB∗′Bπ × qµ εµ(p′)

Pseudoscalar B meson Radially excited vector B∗′ meson

Using the LSZ reduction and the PCAC relation, we are left with the following matrix element which can be
computed on the lattice:

qµ 〈B0(p)|Aµ(0)|B∗′+(p+ q)〉 = gB∗′Bπ (ε · q)× fπm
2
π

m2
π − q2

+ ...

On the lattice with static heavy quarks: zero recoil kinematic configuration (~p = ~p ′ = ~0)

→ Simulations correspond to q2 = q2
max = (mB∗′ −mB)2 6= 0 (far from the chiral limit)

→ One should extrapolate the form factor to q2 = 0 by taking the Fourier transform of the radial distribution
[Becirevic et al. (2012)]

→ Requires the knowledge of the spatial component f (12)
γiγ5(~r) but also of the time component f (12)

γ0γ5(~r)

→ We are now computing the time component f (12)
γ0γ5(~r)
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Conclusion

We have computed the radial distributions of the axial vector density for the ground state and first excited state

−→ We use the GEVP and improved estimators to reduce the statistical noise

−→ We have checked the GEVP results on the radial distributions of the vector density (ZV )

−→ We have five lattice ensembles to study discretization and quark mass effects

−→ Volume effects seems negligible at our level of precision

Results are still preliminary

The next step is to compute the time component of the axial vector distribution: f (mn)
γ0γ5 (~r)

−→ gB∗′Bπ coupling at q2 = 0 (Fourier transform of the distribution)

Thank you
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Smearing

Gaussian smearing on the light quark field ψl is used to reduce the contamination of excited states:

ψ
(i)
l (x) =

(
1 + κGa

2∆
)Ri ψl(x)

It is applied on the contraction with the heavy-quark propagator but not on the probe which must stay local.

The time t is chosen such that the radial distributions has reached a plateau:

Rγµγ5(t, t1, ~r) =
C

(3)
γµγ5,ij

(t, t1;~r)
(
C

(2)
P,ii(t) C

(2)
V,jj(t)

)1/2
−−−−−→
t�t1�1

f (11)
γµγ5(~r) = 〈B|Aµ(~r)|B∗(λ) 〉 ,
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Multi-hadron threshold

Within our lattice setup, the radial excitation of the vector B meson lies near the multi-particles threshold B∗1π

The mass of the axial B meson in the static limit is extracted from our previous study [Blossier et al. (2014)]

We assume that the mass of the two particle state is simply given by EB∗1π = mB∗1
+mπ

CLS amB∗′ − amB

(
amB∗1

− amB

)
+ amπ

A5 0.253(7) 0.281(4)

B6 0.235(8) 0.248(4)

E5 0.225(10) 0.278(6)

F6 0.213(11) 0.233(3)

N6 0.166(9) 0.176(3)

0 0.5 1 1.5 2 2.5 3

r [fm]

B6
F6
N6
A5
E5

−→ All lattice ensembles are near but bellow threshold

−→ The position of the node is remarkably stable and does not depend on the pion mass contrary to what would be
expected in the case of a mixing with the multi-particle state

−→ Indication that our results are safe from multi-hadron thresholds
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