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TABLE II. The ⌦, ⌦c ( 12
+
, 3
2

+
), ⌦cc ( 12

+
, 3
2

+
) and ⌦ccc masses (at a pion mass ofm⇡ = 156 MeV) together with the experimental

values [21] and those obtained by PACS-CS [22] (at the physical point, except the ⌦ which is the m⇡ = 156 MeV value [14]).
We have also included results by ETMC [13] and Briceno et al. [23] obtained by chiral extrapolation. All values are given in
units of GeV.

JP This work PACS-CS [22] ETMC [13] Briceno et al. [23] Exp. [21]
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FIG. 3. Same as Fig. 1 but for the E2 form factor. Fit region
is t1 = [4, 7] for all cases. Error bars are slightly shifted for
clear view.

where hOi is the observable, N
q

is the number quarks
inside the baryon having q flavor and e

q

is the electric
charge of the quark.

We have extracted the spin-3/2 baryon multipole form
factor values by searching for plateau regions of the ra-
tio given in Eq.(14). The correlation-function ratios for
the E0, M1 and E2 form factors are depicted in Figs. 1-
3. Fit values for the form factors at the lowest allowed
three-momentum transfer (q2=0.183 GeV2) are given in
Table III. Note that E0 form factor reduces to the elec-
tric charge of the baryon as usual and the other form
factors cannot be directly obtained at zero momentum
transfer due to their definitions in Eqs. (16)-(18).

C. Charge radii

Electric charge radius of the baryons are obtained
by calculating the slope of the E0 form factor at zero-
momentum transfer:
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In the case of the proton, the low-Q2 experimental data
is well-described by the dipole form Ansatz

G
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(1 +Q2/⇤2)2
, (26)

where ⇤ is the dipole mass. We assume that such Ansatz
also holds for the baryons we study here. Since we per-
form our simulations with a single value of finite momen-
tum transfer, a dipole fit of the form factor to a momen-
tum region is not possible. We can, however, extract the
charge radii using the expression
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which can be readily derived by inserting Eq.(26) into
Eq.(25). Our numerical values for the electric charge
radii using this approach are given in Table IV. Note that
the quark sector contributions are for individual quarks
of unit electric charge.
We observe that the s-quark contribution to the elec-

tric charge radii is almost independent of the quark-flavor
composition of the baryon. The charge radii of both spin-
1/2 and spin-3/2 baryons agree within one standard de-
viation, which can be more clearly seen in Fig. 4. In
the case of c-quark contributions, the charge radii of all
baryons are similar. However, the contribution of indi-
vidual c-quark slightly increases as the number of c-quark
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for Lattice formulation: PRD80 054505(2009)
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ū�µu+ (�1

3
)d̄�µd+ (�1

3
)s̄�µs+

2

3
c̄�µc

B B’

𝜇=0 -> E0 and E2 FF

𝜇=1,2,3 -> M1 FF

electric 
charge

electric 
quadrupole

magnetic 
dipole

𝜏

𝜏

𝜎

𝜎

𝜏=𝜎=1,2,3



1. Lowest momenta, |q|=2π/L 
2. Point-split (conserved) vector 

current: renormalisation not 
necessary 

3. Shell source - Wall sink pairs 
I. Wall sinks: no need for sequential 

inversions  

4. Connected diagrams only 
5.   
6. Single-elimination Jackknife analysis

SIMULATION DETAILS

6
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eliminating the need for extra inversions. However, since
wall smearing in not a gauge-invariant smearing method,
gauge fixing comes in as a necessity. We choose to work
on Coulomb gauge configurations, which leads to a some-
what better signal.

In order to improve the ground-state coupling, un-
smeared ends of the quark propagators are smeared in
a gauge-invariant manner using a Gaussian form. In the
case of s quark, we choose the smearing parameters so as
to give a root-mean-square radius of hr

l

i ⇠ 0.5 fm. We
have measured the size of the charm quark charge radii
to be small compared to the light and strange quarks,
both in mesons [8] and baryons [9, 10]. Motivated by
this observation, we adjust the smearing parameters to
obtain hr

c

i = hr
l

i/3.
The source-sink time separation is fixed to 1.09 fm

(t2 = 12a), which has been shown to be su�cient to
avoid excited state contaminations for electromagnetic
form factors [10]. Using translational symmetry, we have
employed multiple source-sink pairs by shifting them 12
lattice units in the temporal direction. All statistical er-
rors are estimated by a single-elimination jackknife anal-
ysis. We calculate the connected diagrams only and con-
sider the point-split lattice current

j
µ

= 1/2[q̄(x+µ)U †
µ

(1+�
µ

)q(x)�q̄(x)U
µ

(1��
µ

)q(x+µ)],
(23)

which is conserved by Wilson fermions.

III. RESULTS AND DISCUSSION

A. Baryon masses

The masses of the ⌦, ⌦(⇤)
c

, ⌦(⇤)
cc

and ⌦
ccc

baryons are
extracted from the shell-source/point-sink lattice two-
point function given in Eq.(7) by a simultaneous fit to
all spatial Lorentz indices. Our results are given in Ta-
ble II along with a comparison to the masses reported by
PDG and lattice collaborations.

Compared to the experimentally available results we

see around a 100 MeV deviation in case of the ⌦ and ⌦(⇤)
c

masses. Note that the di↵erences mainly arise from our
choice of the strange quark hopping parameter. In order
to avoid the partial-quenching e↵ects we have chosen the

s

to be same as the sea quark’s. It can be seen that our
⌦ mass is in good agreement with the mass reported by
the PAC-CS Collaboration [14]. Still, a 100 MeV discrep-
ancy is rather unsettling. To check the e↵ects, we have
re-analysed our data using the lattice evaluated [22] and
experimental masses [21] and found less than a 1% devia-
tion in the charge radii. The magnetic moments however
are directly a↵ected since the mass of the baryon is used
when we convert to nuclear magnetons (see Sec.IIID).

Choice of the quark action for the charm quark simula-
tions is an on-going debate. The mass of the ⌦

ccc

can be
taken as a good indicator for the aptness of the actions.
Compared to the other lattice simulations [13, 22, 23]

that utilise di↵erent actions, we see that the Clover ac-
tion with simple Fermilab interpretation produces satis-
factory results.
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FIG. 1. Strange (filled) and charm-quark (hollow) contri-
butions to the E0 form factor at the lowest allowed three-
momentum transfer (q2=0.183 GeV2). The contributions are
shown for single quark and normalised to unit charge. The fit
regions are t1 = [4, 7] for charm sector and t1 = [6, 9] for the
strange sector.
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FIG. 2. Same as Fig. 1 but for the M1 form factor. Fit region
is t1 = [4, 7] for all cases.

B. Form Factor correlation functions

In our simulations we evaluate each quark sector sep-
arately and normalise to unit charge contributions. The
baryon properties are then estimated by combining each
contribution by weighting them with their respective
quark numbers and electric charges as,

hOi = N
s

e
s

hO
s

i+N
c

e
c

hO
c

i, (24)

PACS-CS 2+1 flavor Clover  Phys. Rev. D79 (034503) 
L [fm] # confs # meas.

0.13781 156 0.1364 0.0907 fm 2.9 1.09 fm 200 200 (spin-1/2)
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TABLE II. The ⌦, ⌦c ( 12
+
, 3
2

+
), ⌦cc ( 12

+
, 3
2

+
) and ⌦ccc masses (at a pion mass ofm⇡ = 156 MeV) together with the experimental

values [21] and those obtained by PACS-CS [22] (at the physical point, except the ⌦ which is the m⇡ = 156 MeV value [14]).
We have also included results by ETMC [13] and Briceno et al. [23] obtained by chiral extrapolation. All values are given in
units of GeV.
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FIG. 3. Same as Fig. 1 but for the E2 form factor. Fit region
is t1 = [4, 7] for all cases. Error bars are slightly shifted for
clear view.

where hOi is the observable, N
q

is the number quarks
inside the baryon having q flavor and e

q

is the electric
charge of the quark.

We have extracted the spin-3/2 baryon multipole form
factor values by searching for plateau regions of the ra-
tio given in Eq.(14). The correlation-function ratios for
the E0, M1 and E2 form factors are depicted in Figs. 1-
3. Fit values for the form factors at the lowest allowed
three-momentum transfer (q2=0.183 GeV2) are given in
Table III. Note that E0 form factor reduces to the elec-
tric charge of the baryon as usual and the other form
factors cannot be directly obtained at zero momentum
transfer due to their definitions in Eqs. (16)-(18).

C. Charge radii

Electric charge radius of the baryons are obtained
by calculating the slope of the E0 form factor at zero-
momentum transfer:

hr2
E

i = �6
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dQ2
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E0(Q
2)|

Q

2=0. (25)

In the case of the proton, the low-Q2 experimental data
is well-described by the dipole form Ansatz

G
E0(Q

2) =
G

E0(0)

(1 +Q2/⇤2)2
, (26)

where ⇤ is the dipole mass. We assume that such Ansatz
also holds for the baryons we study here. Since we per-
form our simulations with a single value of finite momen-
tum transfer, a dipole fit of the form factor to a momen-
tum region is not possible. We can, however, extract the
charge radii using the expression
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which can be readily derived by inserting Eq.(26) into
Eq.(25). Our numerical values for the electric charge
radii using this approach are given in Table IV. Note that
the quark sector contributions are for individual quarks
of unit electric charge.
We observe that the s-quark contribution to the elec-

tric charge radii is almost independent of the quark-flavor
composition of the baryon. The charge radii of both spin-
1/2 and spin-3/2 baryons agree within one standard de-
viation, which can be more clearly seen in Fig. 4. In
the case of c-quark contributions, the charge radii of all
baryons are similar. However, the contribution of indi-
vidual c-quark slightly increases as the number of c-quark
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FIG. 3. Same as Fig. 1 but for the E2 form factor. Fit region
is t1 = [4, 7] for all cases. Error bars are slightly shifted for
clear view.

where hOi is the observable, N
q

is the number quarks
inside the baryon having q flavor and e

q

is the electric
charge of the quark.

We have extracted the spin-3/2 baryon multipole form
factor values by searching for plateau regions of the ra-
tio given in Eq.(14). The correlation-function ratios for
the E0, M1 and E2 form factors are depicted in Figs. 1-
3. Fit values for the form factors at the lowest allowed
three-momentum transfer (q2=0.183 GeV2) are given in
Table III. Note that E0 form factor reduces to the elec-
tric charge of the baryon as usual and the other form
factors cannot be directly obtained at zero momentum
transfer due to their definitions in Eqs. (16)-(18).

C. Charge radii

Electric charge radius of the baryons are obtained
by calculating the slope of the E0 form factor at zero-
momentum transfer:
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In the case of the proton, the low-Q2 experimental data
is well-described by the dipole form Ansatz

G
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2) =
G

E0(0)

(1 +Q2/⇤2)2
, (26)

where ⇤ is the dipole mass. We assume that such Ansatz
also holds for the baryons we study here. Since we per-
form our simulations with a single value of finite momen-
tum transfer, a dipole fit of the form factor to a momen-
tum region is not possible. We can, however, extract the
charge radii using the expression
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which can be readily derived by inserting Eq.(26) into
Eq.(25). Our numerical values for the electric charge
radii using this approach are given in Table IV. Note that
the quark sector contributions are for individual quarks
of unit electric charge.
We observe that the s-quark contribution to the elec-

tric charge radii is almost independent of the quark-flavor
composition of the baryon. The charge radii of both spin-
1/2 and spin-3/2 baryons agree within one standard de-
viation, which can be more clearly seen in Fig. 4. In
the case of c-quark contributions, the charge radii of all
baryons are similar. However, the contribution of indi-
vidual c-quark slightly increases as the number of c-quark
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eliminating the need for extra inversions. However, since
wall smearing in not a gauge-invariant smearing method,
gauge fixing comes in as a necessity. We choose to work
on Coulomb gauge configurations, which leads to a some-
what better signal.

In order to improve the ground-state coupling, un-
smeared ends of the quark propagators are smeared in
a gauge-invariant manner using a Gaussian form. In the
case of s quark, we choose the smearing parameters so as
to give a root-mean-square radius of hr

l

i ⇠ 0.5 fm. We
have measured the size of the charm quark charge radii
to be small compared to the light and strange quarks,
both in mesons [8] and baryons [9, 10]. Motivated by
this observation, we adjust the smearing parameters to
obtain hr

c

i = hr
l

i/3.
The source-sink time separation is fixed to 1.09 fm

(t2 = 12a), which has been shown to be su�cient to
avoid excited state contaminations for electromagnetic
form factors [10]. Using translational symmetry, we have
employed multiple source-sink pairs by shifting them 12
lattice units in the temporal direction. All statistical er-
rors are estimated by a single-elimination jackknife anal-
ysis. We calculate the connected diagrams only and con-
sider the point-split lattice current

j
µ

= 1/2[q̄(x+µ)U †
µ

(1+�
µ

)q(x)�q̄(x)U
µ

(1��
µ

)q(x+µ)],
(23)

which is conserved by Wilson fermions.

III. RESULTS AND DISCUSSION

A. Baryon masses

The masses of the ⌦, ⌦(⇤)
c

, ⌦(⇤)
cc

and ⌦
ccc

baryons are
extracted from the shell-source/point-sink lattice two-
point function given in Eq.(7) by a simultaneous fit to
all spatial Lorentz indices. Our results are given in Ta-
ble II along with a comparison to the masses reported by
PDG and lattice collaborations.

Compared to the experimentally available results we

see around a 100 MeV deviation in case of the ⌦ and ⌦(⇤)
c

masses. Note that the di↵erences mainly arise from our
choice of the strange quark hopping parameter. In order
to avoid the partial-quenching e↵ects we have chosen the

s

to be same as the sea quark’s. It can be seen that our
⌦ mass is in good agreement with the mass reported by
the PAC-CS Collaboration [14]. Still, a 100 MeV discrep-
ancy is rather unsettling. To check the e↵ects, we have
re-analysed our data using the lattice evaluated [22] and
experimental masses [21] and found less than a 1% devia-
tion in the charge radii. The magnetic moments however
are directly a↵ected since the mass of the baryon is used
when we convert to nuclear magnetons (see Sec.IIID).

Choice of the quark action for the charm quark simula-
tions is an on-going debate. The mass of the ⌦

ccc

can be
taken as a good indicator for the aptness of the actions.
Compared to the other lattice simulations [13, 22, 23]

that utilise di↵erent actions, we see that the Clover ac-
tion with simple Fermilab interpretation produces satis-
factory results.
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B. Form Factor correlation functions

In our simulations we evaluate each quark sector sep-
arately and normalise to unit charge contributions. The
baryon properties are then estimated by combining each
contribution by weighting them with their respective
quark numbers and electric charges as,

hOi = N
s

e
s

hO
s

i+N
c

e
c

hO
c

i, (24)

< r2E >⌦�= �0.326(21) fm2

⌦
r2E

↵
⌦� = �0.307(15) fm2

⌦
r2E

↵
⌦� = 0.321(16) fm2

PRD80, 054505(2009)

PRD82, 034504(2010)

Electric charge radii

Adelaide group

Alexandrou et.al

9

open: spin-1/2 
close: spin-3/2



-0.4

-0.2

0

0.2

0.4

<
r 2
>

E 
  
[fm
2 ]

!c !cc ! ccc! !* * !ccc

RESULTS

𝛺c and 𝛺*c have similar charge radius

10

open: spin-1/2 
close: spin-3/2

4

eliminating the need for extra inversions. However, since
wall smearing in not a gauge-invariant smearing method,
gauge fixing comes in as a necessity. We choose to work
on Coulomb gauge configurations, which leads to a some-
what better signal.

In order to improve the ground-state coupling, un-
smeared ends of the quark propagators are smeared in
a gauge-invariant manner using a Gaussian form. In the
case of s quark, we choose the smearing parameters so as
to give a root-mean-square radius of hr

l

i ⇠ 0.5 fm. We
have measured the size of the charm quark charge radii
to be small compared to the light and strange quarks,
both in mesons [8] and baryons [9, 10]. Motivated by
this observation, we adjust the smearing parameters to
obtain hr

c

i = hr
l

i/3.
The source-sink time separation is fixed to 1.09 fm

(t2 = 12a), which has been shown to be su�cient to
avoid excited state contaminations for electromagnetic
form factors [10]. Using translational symmetry, we have
employed multiple source-sink pairs by shifting them 12
lattice units in the temporal direction. All statistical er-
rors are estimated by a single-elimination jackknife anal-
ysis. We calculate the connected diagrams only and con-
sider the point-split lattice current

j
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= 1/2[q̄(x+µ)U †
µ
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µ

)q(x)�q̄(x)U
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µ

)q(x+µ)],
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which is conserved by Wilson fermions.

III. RESULTS AND DISCUSSION

A. Baryon masses

The masses of the ⌦, ⌦(⇤)
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, ⌦(⇤)
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and ⌦
ccc

baryons are
extracted from the shell-source/point-sink lattice two-
point function given in Eq.(7) by a simultaneous fit to
all spatial Lorentz indices. Our results are given in Ta-
ble II along with a comparison to the masses reported by
PDG and lattice collaborations.

Compared to the experimentally available results we

see around a 100 MeV deviation in case of the ⌦ and ⌦(⇤)
c

masses. Note that the di↵erences mainly arise from our
choice of the strange quark hopping parameter. In order
to avoid the partial-quenching e↵ects we have chosen the

s

to be same as the sea quark’s. It can be seen that our
⌦ mass is in good agreement with the mass reported by
the PAC-CS Collaboration [14]. Still, a 100 MeV discrep-
ancy is rather unsettling. To check the e↵ects, we have
re-analysed our data using the lattice evaluated [22] and
experimental masses [21] and found less than a 1% devia-
tion in the charge radii. The magnetic moments however
are directly a↵ected since the mass of the baryon is used
when we convert to nuclear magnetons (see Sec.IIID).

Choice of the quark action for the charm quark simula-
tions is an on-going debate. The mass of the ⌦

ccc

can be
taken as a good indicator for the aptness of the actions.
Compared to the other lattice simulations [13, 22, 23]

that utilise di↵erent actions, we see that the Clover ac-
tion with simple Fermilab interpretation produces satis-
factory results.
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B. Form Factor correlation functions

In our simulations we evaluate each quark sector sep-
arately and normalise to unit charge contributions. The
baryon properties are then estimated by combining each
contribution by weighting them with their respective
quark numbers and electric charges as,

hOi = N
s

e
s

hO
s

i+N
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e
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hO
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i, (24) Electric charge radii
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ble II along with a comparison to the masses reported by
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Compared to the experimentally available results we

see around a 100 MeV deviation in case of the ⌦ and ⌦(⇤)
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masses. Note that the di↵erences mainly arise from our
choice of the strange quark hopping parameter. In order
to avoid the partial-quenching e↵ects we have chosen the
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to be same as the sea quark’s. It can be seen that our
⌦ mass is in good agreement with the mass reported by
the PAC-CS Collaboration [14]. Still, a 100 MeV discrep-
ancy is rather unsettling. To check the e↵ects, we have
re-analysed our data using the lattice evaluated [22] and
experimental masses [21] and found less than a 1% devia-
tion in the charge radii. The magnetic moments however
are directly a↵ected since the mass of the baryon is used
when we convert to nuclear magnetons (see Sec.IIID).

Choice of the quark action for the charm quark simula-
tions is an on-going debate. The mass of the ⌦
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can be
taken as a good indicator for the aptness of the actions.
Compared to the other lattice simulations [13, 22, 23]

that utilise di↵erent actions, we see that the Clover ac-
tion with simple Fermilab interpretation produces satis-
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B. Form Factor correlation functions

In our simulations we evaluate each quark sector sep-
arately and normalise to unit charge contributions. The
baryon properties are then estimated by combining each
contribution by weighting them with their respective
quark numbers and electric charges as,

hOi = N
s

e
s

hO
s

i+N
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hO
c

i, (24) Electric charge radii
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TABLE VIII. Ratios of the quark magnetic moment contri-
butions in 1/2+/3/2+. Octet/decuplet ratios are extracted
from the numerical results available in the Refs. [2, 5]. All
values are ratios of a single quark contribution of unit charge.

S⌦c/⌦⇤
c

C⌦cc/⌦⇤
cc

S⌅/⌅⇤

|µq
B/µ

q
B⇤ | 0.674(34) 0.615(10) 0.703(50)

S⌦cc/⌦⇤
cc

C⌦c/⌦⇤
c

S⌃/⌃⇤

|µq
B/µ

q
B⇤ | 0.286(13) 0.258(18) 0.245(10)

contribution to the magnetic moment is less sensitive to
the accompanying quarks flavor.
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FIG. 10. Ratios of the quark contributions to the magnetic
moments of the spin-1/2 ⌦c, ⌦cc to spin-3/2 ⌦, ⌦⇤

c baryons.
Rightmost blue data points are octet/decuplet ratios calcu-
lated using the m⇡ = 300 MeV quenched simulation results of
Refs. [2, 5]. qB/B⇤ is a shorthand notation for µq

B/µ
q
B⇤ where

q is the quark flavor and B is the baryon. Absolute values
are shown for a better comparison. Data points denoted by a
triangle indicates a negative value.

We calculate the total magnetic moments by combin-
ing the quark sectors via Eq. (24). The numerical values
are given in the third column of Table VI and an illustra-
tive comparison is made in Fig. 11. We find the magnetic
moment of the ⌦� baryon to be µ⌦� = �1.533 ± 0.055
µ
N

, which is smaller in magnitude than the experimen-
tal value, µexp

⌦� = �2.02 ± 0.05 µ
N

[24]. Magnetic mo-
ments are sensitive to the mass of the baryon. One of
the reasons for this discrepancy can arise from the dif-
ference between our m⌦ = 1.790(17) and the experimen-
tal value, m⌦ = 1.673(29), which is around 7%. Com-
pared to the other lattice determinations that use the
three-point function method, our value is slightly larger
than the quenched result, µ⌦� = �1.697 ± 0.065 µ

N

,
of Boinepalli et.al [5] and agrees with the Alexandrou
et.al’s extrapolated value, µ⌦� = �1.875± 0.399 µ

N

[7].
In Ref.[? ] magnetic moment of ⌦ has determined to be
µ⌦� = �1.93 ± 0.08, by a background field method on
m

⇡

= 366 MeV lattices.
Magnetic moments of ⌦

c

and ⌦⇤
c

are very close to each

other suggesting that the spin flip of the charm quark has
a small e↵ect (as one would expect from a heavy quark
spin symmetry perspective). Based on a quark model
interpretation one would expect the magnetic moment of
⌦

c

(⌦
cc

) to be similar in magnitude to that of ⌦⇤
c

(⌦⇤
cc

)’s.
While in the case of ⌦

c

our finding is consistent with the
quark model expectation, the magnetic moments of ⌦

cc

and ⌦⇤
cc

di↵er drastically, the latter having a completely
vanishing magnetic moment. The di↵erence between the
⌦

c

and ⌦⇤
c

is that the c-quark is anti-aligned with the
ss component in ⌦

c

whereas it becomes aligned in ⌦⇤
c

.
Combined with their electric charges, quark sectors add
constructively for ⌦

c

and destructively for ⌦⇤
c

. These two
di↵erent behaviours happen in a balanced way so that the
magnetic moments of the ⌦

c

and ⌦⇤
c

end up to be similar.
In case of the doubly-charmed ⌦

cc

and ⌦⇤
cc

however, the
interplay between the electric charges and the number of
quarks breaks the balance and lead to di↵erent magnetic
moments for ⌦

cc

and ⌦⇤
cc

.
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FIG. 11. Total magnetic moments of the spin-1/2 ⌦c, ⌦cc
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c , ⌦
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cc and ⌦ccc baryons. Absolute values are

shown for a better comparison. Data points denoted by a
triangle indicates a negative value.

Findings for the magnetic moments

• Quark sector contributions amongst the spin-3/2
baryons are similar to each other, consonant with
the quark-model expectations.

• Magnetic moments of the strange and charm
quarks in spin-3/2 charmed baryons are larger
than spin-1/2 baryons having a similar quark-
flavor composition.

• Magnetic moment of the ⌦� baryon is found to
be, µ⌦� = �1.533± 0.055 µ

N

.
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from the numerical results available in the Refs. [2, 5]. All
values are ratios of a single quark contribution of unit charge.
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FIG. 10. Ratios of the quark contributions to the magnetic
moments of the spin-1/2 ⌦c, ⌦cc to spin-3/2 ⌦, ⌦⇤

c baryons.
Rightmost blue data points are octet/decuplet ratios calcu-
lated using the m⇡ = 300 MeV quenched simulation results of
Refs. [2, 5]. qB/B⇤ is a shorthand notation for µq

B/µ
q
B⇤ where

q is the quark flavor and B is the baryon. Absolute values
are shown for a better comparison. Data points denoted by a
triangle indicates a negative value.

We calculate the total magnetic moments by combin-
ing the quark sectors via Eq. (24). The numerical values
are given in the third column of Table VI and an illustra-
tive comparison is made in Fig. 11. We find the magnetic
moment of the ⌦� baryon to be µ⌦� = �1.533 ± 0.055
µ
N

, which is smaller in magnitude than the experimen-
tal value, µexp

⌦� = �2.02 ± 0.05 µ
N

[24]. Magnetic mo-
ments are sensitive to the mass of the baryon. One of
the reasons for this discrepancy can arise from the dif-
ference between our m⌦ = 1.790(17) and the experimen-
tal value, m⌦ = 1.673(29), which is around 7%. Com-
pared to the other lattice determinations that use the
three-point function method, our value is slightly larger
than the quenched result, µ⌦� = �1.697 ± 0.065 µ

N

,
of Boinepalli et.al [5] and agrees with the Alexandrou
et.al’s extrapolated value, µ⌦� = �1.875± 0.399 µ

N

[7].
In Ref.[? ] magnetic moment of ⌦ has determined to be
µ⌦� = �1.93 ± 0.08, by a background field method on
m

⇡

= 366 MeV lattices.
Magnetic moments of ⌦

c

and ⌦⇤
c

are very close to each

other suggesting that the spin flip of the charm quark has
a small e↵ect (as one would expect from a heavy quark
spin symmetry perspective). Based on a quark model
interpretation one would expect the magnetic moment of
⌦
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(⌦
cc

) to be similar in magnitude to that of ⌦⇤
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(⌦⇤
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)’s.
While in the case of ⌦
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our finding is consistent with the
quark model expectation, the magnetic moments of ⌦
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and ⌦⇤
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di↵er drastically, the latter having a completely
vanishing magnetic moment. The di↵erence between the
⌦
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and ⌦⇤
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is that the c-quark is anti-aligned with the
ss component in ⌦

c

whereas it becomes aligned in ⌦⇤
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.
Combined with their electric charges, quark sectors add
constructively for ⌦
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and destructively for ⌦⇤
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. These two
di↵erent behaviours happen in a balanced way so that the
magnetic moments of the ⌦
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and ⌦⇤
c

end up to be similar.
In case of the doubly-charmed ⌦
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and ⌦⇤
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however, the
interplay between the electric charges and the number of
quarks breaks the balance and lead to di↵erent magnetic
moments for ⌦
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Findings for the magnetic moments

• Quark sector contributions amongst the spin-3/2
baryons are similar to each other, consonant with
the quark-model expectations.

• Magnetic moments of the strange and charm
quarks in spin-3/2 charmed baryons are larger
than spin-1/2 baryons having a similar quark-
flavor composition.

• Magnetic moment of the ⌦� baryon is found to
be, µ⌦� = �1.533± 0.055 µ

N

.

Magnetic moments



RESULTS

0

0.5

1

1.5

2

|!
 | 

 [ 
! N

 ]

"c "cc " ccc" "* * "ccc

4

eliminating the need for extra inversions. However, since
wall smearing in not a gauge-invariant smearing method,
gauge fixing comes in as a necessity. We choose to work
on Coulomb gauge configurations, which leads to a some-
what better signal.

In order to improve the ground-state coupling, un-
smeared ends of the quark propagators are smeared in
a gauge-invariant manner using a Gaussian form. In the
case of s quark, we choose the smearing parameters so as
to give a root-mean-square radius of hr

l

i ⇠ 0.5 fm. We
have measured the size of the charm quark charge radii
to be small compared to the light and strange quarks,
both in mesons [8] and baryons [9, 10]. Motivated by
this observation, we adjust the smearing parameters to
obtain hr

c

i = hr
l

i/3.
The source-sink time separation is fixed to 1.09 fm

(t2 = 12a), which has been shown to be su�cient to
avoid excited state contaminations for electromagnetic
form factors [10]. Using translational symmetry, we have
employed multiple source-sink pairs by shifting them 12
lattice units in the temporal direction. All statistical er-
rors are estimated by a single-elimination jackknife anal-
ysis. We calculate the connected diagrams only and con-
sider the point-split lattice current

j
µ

= 1/2[q̄(x+µ)U †
µ

(1+�
µ

)q(x)�q̄(x)U
µ

(1��
µ

)q(x+µ)],
(23)

which is conserved by Wilson fermions.

III. RESULTS AND DISCUSSION

A. Baryon masses

The masses of the ⌦, ⌦(⇤)
c

, ⌦(⇤)
cc

and ⌦
ccc

baryons are
extracted from the shell-source/point-sink lattice two-
point function given in Eq.(7) by a simultaneous fit to
all spatial Lorentz indices. Our results are given in Ta-
ble II along with a comparison to the masses reported by
PDG and lattice collaborations.

Compared to the experimentally available results we

see around a 100 MeV deviation in case of the ⌦ and ⌦(⇤)
c

masses. Note that the di↵erences mainly arise from our
choice of the strange quark hopping parameter. In order
to avoid the partial-quenching e↵ects we have chosen the

s

to be same as the sea quark’s. It can be seen that our
⌦ mass is in good agreement with the mass reported by
the PAC-CS Collaboration [14]. Still, a 100 MeV discrep-
ancy is rather unsettling. To check the e↵ects, we have
re-analysed our data using the lattice evaluated [22] and
experimental masses [21] and found less than a 1% devia-
tion in the charge radii. The magnetic moments however
are directly a↵ected since the mass of the baryon is used
when we convert to nuclear magnetons (see Sec.IIID).

Choice of the quark action for the charm quark simula-
tions is an on-going debate. The mass of the ⌦

ccc

can be
taken as a good indicator for the aptness of the actions.
Compared to the other lattice simulations [13, 22, 23]

that utilise di↵erent actions, we see that the Clover ac-
tion with simple Fermilab interpretation produces satis-
factory results.
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FIG. 1. Strange (filled) and charm-quark (hollow) contri-
butions to the E0 form factor at the lowest allowed three-
momentum transfer (q2=0.183 GeV2). The contributions are
shown for single quark and normalised to unit charge. The fit
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FIG. 2. Same as Fig. 1 but for the M1 form factor. Fit region
is t1 = [4, 7] for all cases.

B. Form Factor correlation functions

In our simulations we evaluate each quark sector sep-
arately and normalise to unit charge contributions. The
baryon properties are then estimated by combining each
contribution by weighting them with their respective
quark numbers and electric charges as,

hOi = N
s

e
s

hO
s

i+N
c

e
c

hO
c

i, (24)

µ⌦� = �1.533(55)µN µexp

⌦� = �2.02(5)µ
N

µ⌦� = �1.697(65)µN

µ⌦� = �1.875(399)µN

µ⌦� = �1.93(8)µN
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eliminating the need for extra inversions. However, since
wall smearing in not a gauge-invariant smearing method,
gauge fixing comes in as a necessity. We choose to work
on Coulomb gauge configurations, which leads to a some-
what better signal.

In order to improve the ground-state coupling, un-
smeared ends of the quark propagators are smeared in
a gauge-invariant manner using a Gaussian form. In the
case of s quark, we choose the smearing parameters so as
to give a root-mean-square radius of hr

l

i ⇠ 0.5 fm. We
have measured the size of the charm quark charge radii
to be small compared to the light and strange quarks,
both in mesons [8] and baryons [9, 10]. Motivated by
this observation, we adjust the smearing parameters to
obtain hr

c

i = hr
l

i/3.
The source-sink time separation is fixed to 1.09 fm

(t2 = 12a), which has been shown to be su�cient to
avoid excited state contaminations for electromagnetic
form factors [10]. Using translational symmetry, we have
employed multiple source-sink pairs by shifting them 12
lattice units in the temporal direction. All statistical er-
rors are estimated by a single-elimination jackknife anal-
ysis. We calculate the connected diagrams only and con-
sider the point-split lattice current

j
µ

= 1/2[q̄(x+µ)U †
µ

(1+�
µ

)q(x)�q̄(x)U
µ

(1��
µ

)q(x+µ)],
(23)

which is conserved by Wilson fermions.

III. RESULTS AND DISCUSSION

A. Baryon masses

The masses of the ⌦, ⌦(⇤)
c

, ⌦(⇤)
cc

and ⌦
ccc

baryons are
extracted from the shell-source/point-sink lattice two-
point function given in Eq.(7) by a simultaneous fit to
all spatial Lorentz indices. Our results are given in Ta-
ble II along with a comparison to the masses reported by
PDG and lattice collaborations.

Compared to the experimentally available results we

see around a 100 MeV deviation in case of the ⌦ and ⌦(⇤)
c

masses. Note that the di↵erences mainly arise from our
choice of the strange quark hopping parameter. In order
to avoid the partial-quenching e↵ects we have chosen the

s

to be same as the sea quark’s. It can be seen that our
⌦ mass is in good agreement with the mass reported by
the PAC-CS Collaboration [14]. Still, a 100 MeV discrep-
ancy is rather unsettling. To check the e↵ects, we have
re-analysed our data using the lattice evaluated [22] and
experimental masses [21] and found less than a 1% devia-
tion in the charge radii. The magnetic moments however
are directly a↵ected since the mass of the baryon is used
when we convert to nuclear magnetons (see Sec.IIID).

Choice of the quark action for the charm quark simula-
tions is an on-going debate. The mass of the ⌦

ccc

can be
taken as a good indicator for the aptness of the actions.
Compared to the other lattice simulations [13, 22, 23]

that utilise di↵erent actions, we see that the Clover ac-
tion with simple Fermilab interpretation produces satis-
factory results.
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FIG. 1. Strange (filled) and charm-quark (hollow) contri-
butions to the E0 form factor at the lowest allowed three-
momentum transfer (q2=0.183 GeV2). The contributions are
shown for single quark and normalised to unit charge. The fit
regions are t1 = [4, 7] for charm sector and t1 = [6, 9] for the
strange sector.
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B. Form Factor correlation functions

In our simulations we evaluate each quark sector sep-
arately and normalise to unit charge contributions. The
baryon properties are then estimated by combining each
contribution by weighting them with their respective
quark numbers and electric charges as,

hOi = N
s

e
s

hO
s

i+N
c

e
c

hO
c

i, (24) Magnetic moments
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TABLE IX. E2(Q2) results for the ⌦, ⌦⇤
c , ⌦

⇤
cc and ⌦ccc at

q2 = 0.183 GeV2. Values are given in units of [e/m2]. Quark
sector contributions are for single quark and normalised to
unit charge. Last column is calculated by the Eq. 24.

E2(Q
2)s E2(Q

2)c E2(Q
2)

[e/m2] [e/m2] [e/m2]
⌦ -0.337(1.142) — 0.337(1.142)
⌦⇤

c -0.371(539) -0.577(269) -0.137(352)
⌦⇤

cc -0.091(277) -0.255(266) -0.310(128)
⌦ccc — -0.136(38) -0.273(76)

• ⌦
c

, ⌦⇤
c

have similar magnetic moments in magni-
tude.

• Magnetic moment of the ⌦⇤
cc

vanishes unlike the
⌦

cc

.

• As compared to the light decuplet sector, strange-
quark contributions to the magnetic moments of
spin-3/2 charmed baryons are smaller.

E. Electric-quadrupole form factors

The electric-quadrupole form factors of spin-3/2
baryons provide information about the deviation of the
baryon shape from spherical symmetry. In the Breit
frame, the quadrupole form factor and the electric charge
distribution are related as [25],

G
E2(0) = M2

B

Z
d3r ̄(r)(3z2 � r2) (r), (29)

where 3z2 � r is the standard operator used for
quadrupole moments. A positively charged baryon has
a prolate (oblate) charge distribution when quadrupole
form factor is positive (negative).

As we did in case of the E0 and M1 form factors, we
estimate the E2 form factor by the plateau approach.
We compute and extract the s- and c-quark sector con-
tributions individually. E2 form factors in lattice units
are shown in Fig.3 and the numerical values, in units of
e/M2

B

, are given in Table IX. Unfortunately, low sig-
nal/noise ratio does not allow us make a clear conclusion
about ⌦ and ⌦⇤

c

baryons. In the case of the heavier ⌦⇤
cc

and ⌦
ccc

baryons however, the statistical precision is con-
clusive and it is possible to make a prediction about their
shapes. ⌦⇤+

cc

and ⌦++
ccc

have negative E2 moments thus
their charge distributions deform to an oblate shape.

Findings

• ⌦⇤+
cc

and ⌦++
ccc

have oblate charge distribution.

IV. SUMMARY

We have calculated the electromagnetic form factors
of the ⌦, ⌦⇤

c

, ⌦⇤
cc

and ⌦
ccc

baryons at the lowest allowed

three-momentum value (q2 = 0.183 GeV2) on the lat-
tices we use, and extracted their electric charge radii,
magnetic moments and quadrupole moments. Based on
the method outlined in our previous work [10], we have
computed the electromagnetic form factors of the ⌦

c

and
⌦

cc

baryons also and extracted the electric charge radii
and magnetic moments. For each observable we have
identified the quark sector contributions as well as the
baryon properties.

We find that the electric charge radii of the strange
sector is insensitive to the composition of the baryon,
whereas the charm sector shows a slight dependence
to the number of the charm quarks that compose the
baryon. Spin flip has a significant e↵ect on the doubly-
represented quark sectors so that the charge radii of the
doubly-represented strange and charm quarks increase
when the spin of the singly-represented quark is flipped.

In case of the magnetic moments, quark-sector be-
haviours change drastically between the spin-1/2 and
spin-3/2 charmed baryons such that the quark-sector
contributions to the magnetic moments of spin-3/2
baryons get enhanced. Magnetic moments of ⌦

c

and
⌦⇤

c

baryons are found to be similar indicating a negligi-
ble spin-flip e↵ect by the singly-represented charm quark.
⌦⇤

cc

baryon has a vanishing magnetic moment unlike the
spin-1/2 ⌦

cc

baryon. Strange-quark contributions to the
magnetic moments decrease within the charmed baryons
compared to the decuplet sector.

Lastly, we are able to achieve a statistically significant
data for the quadrupole moments of the ⌦⇤

cc

and ⌦
ccc

baryons to conclude that their electric charge distribu-
tions deform to oblate and prolate shapes, respectively.
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TABLE IX. E2(Q2) results for the ⌦, ⌦⇤
c , ⌦

⇤
cc and ⌦ccc at

q2 = 0.183 GeV2. Values are given in units of [e/m2]. Quark
sector contributions are for single quark and normalised to
unit charge. Last column is calculated by the Eq. 24.

E2(Q
2)s E2(Q

2)c E2(Q
2)

[e/m2] [e/m2] [e/m2]
⌦ -0.337(1.142) — 0.337(1.142)
⌦⇤

c -0.371(539) -0.577(269) -0.137(352)
⌦⇤

cc -0.091(277) -0.255(266) -0.310(128)
⌦ccc — -0.136(38) 0.136(38)

• ⌦
c

, ⌦⇤
c

have similar magnetic moments in magni-
tude.

• Magnetic moment of the ⌦⇤
cc

vanishes unlike the
⌦

cc

.

• As compared to the light decuplet sector, strange-
quark contributions to the magnetic moments of
spin-3/2 charmed baryons are smaller.

E. Electric-quadrupole form factors

The electric-quadrupole form factors of spin-3/2
baryons provide information about the deviation of the
baryon shape from spherical symmetry. In the Breit
frame, the quadrupole form factor and the electric charge
distribution are related as [25],

G
E2(0) = M2

B

Z
d3r ̄(r)(3z2 � r2) (r), (29)

where 3z2 � r is the standard operator used for
quadrupole moments. A positively charged baryon has
a prolate (oblate) charge distribution when quadrupole
form factor is positive (negative).

As we did in case of the E0 and M1 form factors, we
estimate the E2 form factor by the plateau approach.
We compute and extract the s- and c-quark sector con-
tributions individually. E2 form factors in lattice units
are shown in Fig.3 and the numerical values, in units of
e/M2

B

, are given in Table IX. Unfortunately, low sig-
nal/noise ratio does not allow us make a clear conclu-
sion about ⌦ and ⌦⇤

c

baryons. In the case of the heavier
⌦⇤

cc

and ⌦
ccc

baryons however, the statistical precision is
conclusive and it is possible to make a prediction about
their shapes. ⌦⇤+

cc

has a negative E2 moment thus its
charge distribution deforms to an oblate shape while the
E2 moment of ⌦++

ccc

is positive, same as its electric charge,
leading to a prolate charge distribution.

Findings

• ⌦⇤+
cc

(⌦++
ccc

) has an oblate (prolate) charge distribu-
tion.

IV. SUMMARY

We have calculated the electromagnetic form factors
of the ⌦, ⌦⇤

c

, ⌦⇤
cc

and ⌦
ccc

baryons at the lowest allowed
three-momentum value (q2 = 0.183 GeV2) on the lat-
tices we use, and extracted their electric charge radii,
magnetic moments and quadrupole moments. Based on
the method outlined in our previous work [10], we have
computed the electromagnetic form factors of the ⌦

c

and
⌦

cc

baryons also and extracted the electric charge radii
and magnetic moments. For each observable we have
identified the quark sector contributions as well as the
baryon properties.
We find that the electric charge radii of the strange

sector is insensitive to the composition of the baryon,
whereas the charm sector shows a slight dependence
to the number of the charm quarks that compose the
baryon. Spin flip has a significant e↵ect on the doubly-
represented quark sectors so that the charge radii of the
doubly-represented strange and charm quarks increase
when the spin of the singly-represented quark is flipped.
In case of the magnetic moments, quark-sector be-

haviours change drastically between the spin-1/2 and
spin-3/2 charmed baryons such that the quark-sector
contributions to the magnetic moments of spin-3/2
baryons get enhanced. Magnetic moments of ⌦

c

and
⌦⇤

c

baryons are found to be similar indicating a negligi-
ble spin-flip e↵ect by the singly-represented charm quark.
⌦⇤

cc

baryon has a vanishing magnetic moment unlike the
spin-1/2 ⌦

cc

baryon. Strange-quark contributions to the
magnetic moments decrease within the charmed baryons
compared to the decuplet sector.
Lastly, we are able to achieve a statistically significant

data for the quadrupole moments of the ⌦⇤
cc

and ⌦
ccc

baryons to conclude that their electric charge distribu-
tions deform to oblate and prolate shapes, respectively.
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TABLE IX. E2(Q2) results for the ⌦, ⌦⇤
c , ⌦

⇤
cc and ⌦ccc at

q2 = 0.183 GeV2. Values are given in units of [e/m2]. Quark
sector contributions are for single quark and normalised to
unit charge. Last column is calculated by the Eq. 24.

E2(Q
2)s E2(Q

2)c E2(Q
2)

[e/m2] [e/m2] [e/m2]
⌦ -0.337(1.142) — 0.337(1.142)
⌦⇤

c -0.371(539) -0.577(269) -0.137(352)
⌦⇤

cc -0.091(277) -0.255(87) -0.310(128)
⌦ccc — -0.136(38) -0.273(76)

• Magnetic moment of the ⌦⇤
cc

vanishes unlike the
⌦

cc

.

• As compared to the light decuplet sector, strange-
quark contributions to the magnetic moments of
spin-3/2 charmed baryons are smaller.

E. Electric-quadrupole form factors

The electric-quadrupole form factors of spin-3/2
baryons provide information about the deviation of the
baryon shape from spherical symmetry. In the Breit
frame, the quadrupole form factor and the electric charge
distribution are related as [26],

G
E2(0) = M2

B

Z
d3r ̄(r)(3z2 � r2) (r), (29)

where 3z2 � r is the standard operator used for
quadrupole moments. A positively charged baryon has
a prolate (oblate) charge distribution when quadrupole
form factor is positive (negative).

As we did in case of the E0 and M1 form factors, we
estimate the E2 form factor by the plateau approach.
We compute and extract the s- and c-quark sector con-
tributions individually. E2 form factors in lattice units
are shown in Fig.3 and the numerical values, in units of
e/M2

B

, are given in Table IX. Unfortunately, low sig-
nal/noise ratio does not allow us make a clear conclusion
about ⌦ and ⌦⇤

c

baryons. In the case of the heavier ⌦⇤
cc

and ⌦
ccc

baryons however, the statistical precision is con-
clusive and it is possible to make a prediction about their
shapes. ⌦⇤+

cc

and ⌦++
ccc

have negative E2 moments thus
their charge distributions deform to an oblate shape.

Findings

• ⌦⇤+
cc

and ⌦++
ccc

have oblate charge distribution.

IV. SUMMARY

We have calculated the electromagnetic form factors
of the ⌦, ⌦⇤

c

, ⌦⇤
cc

and ⌦
ccc

baryons at the lowest allowed

three-momentum value (q2 = 0.183 GeV2) on the lat-
tices we use, and extracted their electric charge radii,
magnetic moments and quadrupole moments. Based on
the method outlined in our previous work [10], we have
computed the electromagnetic form factors of the ⌦

c

and
⌦

cc

baryons also and extracted the electric charge radii
and magnetic moments. For each observable we have
identified the quark sector contributions as well as the
baryon properties.

We find that the electric charge radii of the strange
sector is insensitive to the composition of the baryon,
whereas the charm sector shows a slight dependence
to the number of the charm quarks that compose the
baryon. Spin flip has a significant e↵ect on the doubly-
represented quark sectors so that the charge radii of the
doubly-represented strange and charm quarks increase
when the spin of the singly-represented quark is flipped.

In case of the magnetic moments, quark-sector be-
haviours change drastically between the spin-1/2 and
spin-3/2 charmed baryons such that the quark-sector
contributions to the magnetic moments of spin-3/2
baryons get enhanced. Magnetic moments of ⌦

c

and
⌦⇤

c

baryons are found to be similar indicating a negligi-
ble spin-flip e↵ect by the singly-represented charm quark.
⌦⇤

cc

baryon has a vanishing magnetic moment unlike the
spin-1/2 ⌦

cc

baryon. Strange-quark contributions to the
magnetic moments decrease within the charmed baryons
compared to the decuplet sector.

Lastly, we are able to achieve a statistically significant
data for the quadrupole moments of the ⌦⇤

cc

and ⌦
ccc

baryons to conclude that their electric charge distribu-
tions deform to oblate shape.
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SUMMARY
Charge radii: 

         is insensitive to the composition of the baryon 

         slightly increases with the increasing number of c-quarks 

Magnetic moments: 

  

u -> c , s-quark contribution is insensitive, 

uu -> cc , effect of uu component is bigger 

𝛺c and 𝛺*c have similar mag. moments in magnitude 

𝛺*cc has a vanishing mag. moment unlike 𝛺cc 

E2 moments: 

𝛺*+cc and 𝛺++ccc have oblate electric charge distributions
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A. Theoretical formulation

The electromagnetic transition matrix element for the
spin-3/2 baryons can be written as

hB
�

(p0, s0)|j
µ

|B
⌧

(p, s)i

=

r
M2

B
E E0 ū�

(p0, s0)O�µ⌧u
⌧

(p, s),
(1)

where p(s) and p0(s0) denote the four momentum (spin)
of the initial and final states, respectively. MB is the
mass of the baryon, E (E0) is the energy of the incoming
(outgoing) baryon state and u

↵

(p, s) is the baryon spinor
in the Rarita-Schwinger formalism. The tensor in Eq. (1)
can be written in a Lorentz-covariant form as [12]

O�µ⌧ =� g�⌧
⇢
a1�

µ +
a2

2MB
Pµ

�

� q�q⌧

(2MB)2

⇢
c1�

µ +
c2

2MB
Pµ

�
,

(2)

where P = p+p0 and q = p0�p. The multipole form fac-
tors are defined in terms of the covariant vertex functions
a1, a2, c1 and c2 as,

G
E0(q

2) = (1 +
2

3
⌧) {a1 + (1 + ⌧)a2}

� 1

3
⌧(1 + ⌧) {c1 + (1 + ⌧)c2} ,

(3)

G
E2(q

2) = {a1 + (1 + ⌧)a2}
� 1

2
(1 + ⌧) {c1 + (1 + ⌧)c2} ,

(4)

G
M1(q

2) = (1 +
4

3
⌧)a1 � 2

3
⌧(1 + ⌧)c1, (5)

G
M3(q

2) = a1 � 1

2
(1 + ⌧)c1, (6)

with ⌧ = �q2/(2M
B

)2. These multipole form factors are
referred to as electric-charge (E0), electric-quadrupole
(E2), magnetic-dipole (M1) and magnetic-octuple (M3)
multipole form factors.

The two- and three-point correlation functions for spin-
3/2 baryons are defined as,

hGBB
�⌧

(t;p;�4)i =
X

x

e�ip·x�↵↵

0

4

⇥ hvac|T [⌘↵
�

(x)⌘̄↵
0

⌧

(0)]|vaci,
(7)

hGBj

µB
�⌧

(t2, t1;p
0,p;�)i = �i

X

x2,x1

e�ip·x2eiq·x1

⇥�↵↵

0hvac|T [⌘↵
�

(x2)jµ(x1)⌘̄
↵

0

⌧

(0)]|vaci,
(8)

with the spin projection matrices

�
i

=
1

2

✓
�
i

0
0 0

◆
, �4 =

1

2

✓
I 0
0 0

◆
, (9)

where �
i

are the Pauli spin matrices, ↵, � denote the
Dirac indices and �, ⌧ are the Lorentz indices of the
spin-3/2 interpolating fields. The baryon interpolating
fields are chosen, similarly to those of Delta baryon as

⌘
µ

(x) =
1p
3
✏ijk{2[sTi(x)C�

µ

cj(x)]sk(x)

+[sTi(x)C�
µ

sj(x)]ck(x)},
(10)

where i, j, k denote the color indices and C = �4�2. It
has been shown in Refs. [5, 13] that the interpolating field
in Eq. (10) has minimal overlap with spin-1/2 states and
therefore spin-3/2 projection is not necessary.
Inserting a complete set of eigenstatesP
s

|(p, s)ih(p, s)| into (7) and (8) and taking the
large Euclidean time limit, t2 � t1 and t1 � a,
correlation functions reduce to

hGBB
�⌧

(t;p;�4)i =
ZB(p)Z̄B(p)

MB
E

e�EtTr[�4⇤�⌧

],
(11)

hGBj

µB
�⌧

(t2, t1;p
0,p;�)i = ZB(p

0)Z̄B(p)
M2

B
EE0

⇥ Tr[�⇤
��

0(p0)O�

0
µ⌧

0
⇤
⌧

0
⌧

(p)],

(12)

where the trace acts in the Dirac space, the ZB(p) is
the overlap factor of the interpolating field to the corre-
sponding baryon state and ⇤

�⌧

is the Rarita-Schwinger
spin sum for the spin-3/2 field in Euclidean space, defined
as

X

s

u
�

(p, s)ū
⌧

(p, s) =
�i� · p+MB

2MB

⇥

g
�⌧

� 1

3
�
�

�
⌧

+
2p

�

p
⌧

3M2
B

� i
p
�

�
⌧

� p
⌧

�
�

3MB

�

⌘ ⇤
�⌧

(p).

(13)

To extract the multipole form factors we consider
the following ratio of the correlation functions given in
Eqs. (7) and (8),

R µ

� ⌧

(t2, t1;p
0,p;�) =

 hGBj

µB
�⌧

(t2, t1;p0,p;�)ihGBj

µB
�⌧

(t2, t1;p,�p0;�)i
hGBB

�⌧

(t2;p0;�4)ihGBB
�⌧

(t2;�p;�4)i
�1/2

t1�a������!
t2�t1�a

✓
E

p

+MB
2E

p

◆1/2 ✓
E

p

0 +MB
2E

p

0

◆1/2

⇥⇧ µ

� ⌧

(p0,p;�).
(14)

Note that there is no sum over the repeated indices.
The multipole form factors can be extracted by using

the following combinations of ⇧ µ

� ⌧

(p0,p;�) [5]:

G
E0(q

2) =
1

3

�
⇧ 4

1 1(qi

, 0;�4) +⇧ 4
2 2(qi

, 0;�4)

+⇧ 4
3 3(qi

, 0;�4) ),
(15)
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⌧

(p, s) =
�i� · p+MB

2MB

⇥

g
�⌧

� 1

3
�
�

�
⌧

+
2p

�

p
⌧

3M2
B

� i
p
�

�
⌧

� p
⌧

�
�

3MB

�

⌘ ⇤
�⌧

(p).

(13)

To extract the multipole form factors we consider
the following ratio of the correlation functions given in
Eqs. (7) and (8),

R µ

� ⌧

(t2, t1;p
0,p;�) =

 hGBj

µB
�⌧

(t2, t1;p0,p;�)ihGBj

µB
�⌧

(t2, t1;p,�p0;�)i
hGBB

�⌧

(t2;p0;�4)ihGBB
�⌧

(t2;�p;�4)i
�1/2

t1�a������!
t2�t1�a

✓
E

p

+MB
2E

p

◆1/2 ✓
E

p

0 +MB
2E

p

0

◆1/2

⇥⇧ µ

� ⌧

(p0,p;�).
(14)

Note that there is no sum over the repeated indices.
The multipole form factors can be extracted by using

the following combinations of ⇧ µ

� ⌧

(p0,p;�) [5]:

G
E0(q

2) =
1

3

�
⇧ 4

1 1(qi

, 0;�4) +⇧ 4
2 2(qi

, 0;�4)

+⇧ 4
3 3(qi

, 0;�4) ),
(15)

Electric charge

Electric 
quadrupole

Magnetic dipole

EM FORM FACTORS

hB�(p
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B
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as drived in S. Nozawa and D. Leinweber, Phys.Rev. D42, 3567(1990)

P = p’ + p
q = p’ - p

spin-3/2

⌧ = �q2/(2MB)
2
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where i = 1, 2, 3 and q
i

are the momentum vectors in
three spatial directions. In case of the E2 form factor, it
is possible to exploit the symmetry,

⇧ 4
2 2(qi

, 0;�4) = ⇧ 4
3 3(qi

, 0;�4), (19)

and define an average
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(20)

in order to decrease the statistical noise in G
E2. With

the above definitions, G
E2 form factor can be rewritten

as

G
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�
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(21)

We consider an average over momentum directions for
both E0 and E2 form factors. In case of the M1 form
factor, we make a redefinition to utilise all possible index
combinations in order to improve the signal. Sum of all
correlation-function ratios for M1 is written as

G
M1(q

2) = �3

5

E +M)

|q|2
1

6

3X
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i 6=j 6=k

h
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i i

(q
i

, 0;�
k
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+⇧ j

i i

(q
k

, 0;�
i
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i i

(q
j

, 0;�
k
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⇤
.

(22)

Compared to the dominant form factors E0 and M1
we have observed that the data for the E2 and M3 form
factor is much noisier. It become apparent that with
the limited number of gauge configurations we have at
the smallest quark mass, M3 moments are too noisy to
extract a significant value. Thus, we omit the M3 form
factor and extract only the E0, M1 and E2 form factors
for the lowest allowed lattice momentum transfer.

We note that there are di↵erent lattice formulations to
extract spin-3/2 multipole form factors. The one sum-
marised here considers the diagonal transitions between
the Lorentz components of the source and sink particles.
The method used in Ref.[7] considers o↵-diagonal transi-
tions also.

B. Lattice setup

We have run our simulations on gauge configurations
generated by PACS-CS collaboration [14] with the non-
perturbatively O(a)-improved Wilson quark action and
the Iwasaki gauge action. The details of the gauge config-
urations are given in Table I. The simulations are carried
out with near physical u,d sea quarks of hopping param-
eter u,d = 0.13781. This corresponds to a pion mass
of approximately 156 MeV [14]. The hopping parameter
for the sea s quark is fixed to s

sea = 0.13640 and the
hopping parameter for the valence s-quark is taken to be
the same.

TABLE I. The details of the gauge configurations used in this
work [14]. We list the number of flavors (Nf ), the lattice spac-
ing (a), the lattice size (L), inverse gauge coupling (�), clover
coe�cient (cSW ), number of gauge configurations employed
and the corresponding pion mass (m⇡).

N

3
s ⇥ Nt Nf a [fm] L [fm] � cSW # of conf. m⇡ [MeV]

323 ⇥ 64 2+1 0.0907(13) 2.90 1.90 1.715 194 156(7)(2)

For the charm quarks, we employ the Clover action and
use the hopping parameter value, 

c

= 0.1246, which
we have determined in our previous work [10]. In or-
der to tune the hopping parameter we apply the Fer-
milab method [15] in the form employed by the Fermi-
lab Lattice and MILC Collaborations [16, 17]. A similar
procedure has been recently used to study charmonium,
heavy-light meson resonances and their scattering with
pion and kaon [18–20]. In the Fermilab method’s sim-
plest application one sets the Clover coe�cients c

E

and
c
B

to the tadpole-improved value 1/u3
0, where u0 is the

average link. We follow the approach used in Ref. [18] to
estimate the u0 as the fourth root of the average plaque-
tte and determine the charm-quark hopping parameter

c

nonperturbatively by tuning the spin-averaged static
masses of charmonium and heavy-light mesons to their
experimental results.
We make our simulations with the lowest allowed lat-

tice momentum transfer q = 2⇡/(N
s

a), where N
s

is the
spatial dimension of the lattice and a is the lattice spac-
ing. This corresponds to three-momentum squared value
of q2 = 0.183 GeV2. Note that the four-momentum q2

depends on the mass of the baryon so that Q2 = �q2

value is di↵erent for each baryon. In order to increase
statistics, we insert all possible momentum components,
namely (|q

x

|, |q
y

|, |q
z

|) = (�1, 0, 0), (0,�1, 0), (0, 0,�1),
(1, 0, 0), (0, 1, 0), (0, 0, 1). We also consider vector-
current and spin projections along all spatial directions
and take into account all Lorentz components of the
Rarita-Schwinger field. We employ a wall-source/sink
method [8], which enables us to simultaneously extract
all the components of the correlators given in Eqs. 15-17,

3

G
E2(q

2) = 2
M(E +M)

|q
i

|2
�
⇧ 4

1 1(qi

, 0;�4)

+⇧ 4
2 2(qi

, 0;�4)� 2⇧ 4
3 3(qi

, 0;�4) ),

(16)

G
M1(q

2) = �3

5

E +M

|q1|2
�
⇧ 3

1 1(q1, 0;�2)

+⇧ 3
2 2(q1, 0;�2) +⇧ 3

3 3(q1, 0;�2) ),

(17)

G
M3(q

2) = �4
M(E +M)2

|q1|3
�
⇧ 3

1 1(q1, 0;�2)

+⇧ 3
2 2(q1, 0;�2)� 3

2
⇧ 3

3 3(q1, 0;�2) ),

(18)

where i = 1, 2, 3 and q
i

are the momentum vectors in
three spatial directions. In case of the E2 form factor, it
is possible to exploit the symmetry,

⇧ 4
2 2(qi

, 0;�4) = ⇧ 4
3 3(qi

, 0;�4), (19)

and define an average

⇧4
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(q
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, 0;�4) =

1

2

⇥
⇧ 4

2 2(qi

, 0;�4) +⇧ 4
3 3(qi

, 0;�4)
⇤
,

(20)

in order to decrease the statistical noise in G
E2. With

the above definitions, G
E2 form factor can be rewritten

as

G
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We consider an average over momentum directions for
both E0 and E2 form factors. In case of the M1 form
factor, we make a redefinition to utilise all possible index
combinations in order to improve the signal. Sum of all
correlation-function ratios for M1 is written as

G
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Compared to the dominant form factors E0 and M1
we have observed that the data for the E2 and M3 form
factor is much noisier. It become apparent that with
the limited number of gauge configurations we have at
the smallest quark mass, M3 moments are too noisy to
extract a significant value. Thus, we omit the M3 form
factor and extract only the E0, M1 and E2 form factors
for the lowest allowed lattice momentum transfer.

We note that there are di↵erent lattice formulations to
extract spin-3/2 multipole form factors. The one sum-
marised here considers the diagonal transitions between
the Lorentz components of the source and sink particles.
The method used in Ref.[7] considers o↵-diagonal transi-
tions also.

B. Lattice setup

We have run our simulations on gauge configurations
generated by PACS-CS collaboration [14] with the non-
perturbatively O(a)-improved Wilson quark action and
the Iwasaki gauge action. The details of the gauge config-
urations are given in Table I. The simulations are carried
out with near physical u,d sea quarks of hopping param-
eter u,d = 0.13781. This corresponds to a pion mass
of approximately 156 MeV [14]. The hopping parameter
for the sea s quark is fixed to s

sea = 0.13640 and the
hopping parameter for the valence s-quark is taken to be
the same.

TABLE I. The details of the gauge configurations used in this
work [14]. We list the number of flavors (Nf ), the lattice spac-
ing (a), the lattice size (L), inverse gauge coupling (�), clover
coe�cient (cSW ), number of gauge configurations employed
and the corresponding pion mass (m⇡).

N

3
s ⇥ Nt Nf a [fm] L [fm] � cSW # of conf. m⇡ [MeV]

323 ⇥ 64 2+1 0.0907(13) 2.90 1.90 1.715 194 156(7)(2)

For the charm quarks, we employ the Clover action and
use the hopping parameter value, 

c

= 0.1246, which
we have determined in our previous work [10]. In or-
der to tune the hopping parameter we apply the Fer-
milab method [15] in the form employed by the Fermi-
lab Lattice and MILC Collaborations [16, 17]. A similar
procedure has been recently used to study charmonium,
heavy-light meson resonances and their scattering with
pion and kaon [18–20]. In the Fermilab method’s sim-
plest application one sets the Clover coe�cients c

E

and
c
B

to the tadpole-improved value 1/u3
0, where u0 is the

average link. We follow the approach used in Ref. [18] to
estimate the u0 as the fourth root of the average plaque-
tte and determine the charm-quark hopping parameter

c

nonperturbatively by tuning the spin-averaged static
masses of charmonium and heavy-light mesons to their
experimental results.
We make our simulations with the lowest allowed lat-

tice momentum transfer q = 2⇡/(N
s

a), where N
s

is the
spatial dimension of the lattice and a is the lattice spac-
ing. This corresponds to three-momentum squared value
of q2 = 0.183 GeV2. Note that the four-momentum q2

depends on the mass of the baryon so that Q2 = �q2

value is di↵erent for each baryon. In order to increase
statistics, we insert all possible momentum components,
namely (|q

x

|, |q
y

|, |q
z

|) = (�1, 0, 0), (0,�1, 0), (0, 0,�1),
(1, 0, 0), (0, 1, 0), (0, 0, 1). We also consider vector-
current and spin projections along all spatial directions
and take into account all Lorentz components of the
Rarita-Schwinger field. We employ a wall-source/sink
method [8], which enables us to simultaneously extract
all the components of the correlators given in Eqs. 15-17,

①

③

②

spin-3/2 Adelaide group: PRD80, 054505 (2009)

can’t extract q2=0 directly
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TABLE II. The ⌦, ⌦c ( 12
+
, 3
2

+
), ⌦cc ( 12

+
, 3
2

+
) and ⌦ccc masses (at a pion mass ofm⇡ = 156 MeV) together with the experimental

values [22] and those obtained by PACS-CS [21] (at the physical point, except the ⌦ which is the m⇡ = 156 MeV value [14]).
We have also included results by ETMC [13] and Briceno et al. [23] obtained by chiral extrapolation. All values are given in
units of GeV.

JP This work PACS-CS [21] ETMC [13] Briceno et al. [23] Exp. [22]

[GeV] [GeV] [GeV] [GeV] [GeV]

⌦c
1
2

+
2.783(13) 2.673(17) 2.629(22) 2.681(48) 2.695(2)

⌦cc
1
2

+
3.747(10) 3.704(21) 3.654(18) 3.679(62) —

⌦ 3
2

+
1.790(17) 1.772(7) [14] 1.672(18) — 1.673(29)

⌦⇤
c

3
2

+
2.837(18) 2.738(17) 2.709(26) 2.764(49) 2.766(2)

⌦⇤
cc

3
2

+
3.819(10) 3.779(23) 3.724(21) 3.765(65) —

⌦ccc
3
2

+
4.769(6) 4.789(27) 4.733(18) 4.761(79) —
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FIG. 3. Same as Fig. 1 but for the E2 form factor. Fit region
is t1 = [4, 7] for all cases. Error bars are slightly shifted for
clear view.

where hOi is the observable, N
q

is the number quarks
inside the baryon having q flavor and e

q

is the electric
charge of the quark.

We have extracted the spin-3/2 baryon multipole form
factor values by searching for plateau regions of the ra-
tio given in Eq.(14). The correlation-function ratios for
the E0, M1 and E2 form factors are depicted in Figs. 1-
3. Fit values for the form factors at the lowest allowed
three-momentum transfer (q2=0.183 GeV2) are given in
Table III. Note that E0 form factor reduces to the elec-
tric charge of the baryon as usual and the other form
factors cannot be directly obtained at zero momentum
transfer due to their definitions in Eqs. (16)-(18).

C. Charge radii

Electric charge radius of the baryons are obtained
by calculating the slope of the E0 form factor at zero-
momentum transfer:

hr2
E

i = �6
d

dQ2
G

E0(Q
2)|

Q

2=0. (25)

In the case of the proton, the low-Q2 experimental data
is well-described by the dipole form Ansatz

G
E0(Q

2) =
G

E0(0)

(1 +Q2/⇤2)2
, (26)

where ⇤ is the dipole mass. We assume that such Ansatz
also holds for the baryons we study here. Since we per-
form our simulations with a single value of finite momen-
tum transfer, a dipole fit of the form factor to a momen-
tum region is not possible. We can, however, extract the
charge radii using the expression

hr2
E

i
G

E0(0)
=

12

Q2
min

 s
G

E0(0)

G
E0(Q2

min

)
� 1

!
, (27)

which can be readily derived by inserting Eq.(26) into
Eq.(25). Our numerical values for the electric charge
radii using this approach are given in Table IV. Note that
the quark sector contributions are for individual quarks
of unit electric charge.
We observe that the s-quark contribution to the elec-

tric charge radii is almost independent of the quark-flavor
composition of the baryon. The charge radii of both spin-
1/2 and spin-3/2 baryons agree within one standard de-
viation, which can be more clearly seen in Fig. 4. In
the case of c-quark contributions, the charge radii of all
baryons are similar. However, the contribution of indi-
vidual c-quark slightly increases as the number of c-quark

m⌦⇤
c
�m⌦c = 54± 17MeV

m⌦⇤
c
�m⌦c = 70.7± 0.9+0.1

�0.9 MeV

This work

Belle Collab.  PLB 672 (2009)

PRD90 074501 (2014) PRD86 094504 (2012)
[21] PRD87 094512 (2013) 
[14] PRD79 034503 (2009)
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TABLE III. E0(Q2), M1(Q2) and E2(Q2) form factor results for the ⌦, ⌦⇤
c , ⌦

⇤
cc and ⌦ccc at q2=0.183 GeV2. Results are given

in lattice units for single quark and normalised to unit charges.

E0s(Q2) E0c(Q2) M1s(Q2) M1c(Q2) E2s(Q2) E2c(Q2)

[a] [a] [a] [a] [a] [a]
⌦ 0.789(12) — 2.307(94) — -0.228(773) —
⌦c 0.778(9) 0.954(4) 3.413(96) 1.032(25) -0.630(915) -0.979(456)
⌦cc 0.775(8) 0.942(2) 4.442(110) 1.349(16) -0.280(852) -0.787(266)
⌦ccc — 0.937(2) — 1.609(12) — -0.655(182)

TABLE IV. Electric charge radii of the ⌦, ⌦⇤
c , ⌦

⇤
cc and ⌦ccc.

Results are given in fm2. Quark sector contributions are for
single quark and normalised to unit charge. Total electric
charge radius of the spin-1/2 ⌦c is estimated by the Eq. 24
since its electric form factor vanishes due to its zero electric
charge.

hr2Eis hr2Eic hr2Ei
[fm2] [fm2] [fm2]

⌦c 0.329(25) 0.064(11) -0.177(18)
⌦cc 0.313(16) 0.073(4) 0.026(4)
⌦ 0.326(21) — -0.326(21)
⌦⇤

c 0.345(17) 0.062(5) -0.189(12)
⌦⇤

cc 0.348(16) 0.078(3) -0.012(6)
⌦ccc — 0.084(3) 0.168(5)

increases in the composition the baryon. This tendency
is more evident in the case of spin-3/2 sector as compared
to the spin-1/2 sector.

In Fig. 6 we show the ratios of individual quark-flavor
contributions in the spin-1/2 to that in the spin-3/2 sec-
tor. We observe that for the singly-charmed ⌦

c

baryon,
s- and c-quark charge distributions are insensitive to the
spin-flip of the c-quark whereas in the case of the doubly-
charmed ⌦

cc

baryon the contributions of s- and c-quark
to the charge radii increase.
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ccc! !* *

FIG. 4. s-quark contribution to the electric charge radius of
the spin-1/2 ⌦c, ⌦cc and spin-3/2 ⌦, ⌦⇤

c and ⌦⇤
cc baryons.

We combine the individual quark contributions accord-
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FIG. 5. c-quark contribution to the electric charge radius of
the spin-1/2 ⌦c, ⌦cc and spin-3/2 ⌦⇤

c , ⌦
⇤
cc and ⌦ccc baryons.
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FIG. 6. Ratio of the quark contribution to the electric charge
radius of the spin-1/2 ⌦c, ⌦cc to spin-3/2 ⌦, ⌦⇤

c baryons.
qB/B⇤ is a shorthand notation for the ratio,

⌦
r2E

↵q
B
/
⌦
r2E

↵q
B⇤ ,

where q is the quark flavor and B is the baryon.

ing to Eq. (24) and list the numerical results in Table IV.
We find the electric charge radius of the ⌦ baryon to be
hr2

E

i⌦� = �0.326(21) fm2 in quite good agreement with
the previous lattice determinations [5, 7]. A comparison
of baryon charge radii is made in Fig. 7. In magnitude, ⌦
(⌦⇤

c

) baryon has the largest electric charge radius among
all (spin-3/2) baryons we study. Spin-1/2 (spin-3/2) ⌦

c

Quark charge radii increase in doubly charmed spin-3/2
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eliminating the need for extra inversions. However, since
wall smearing in not a gauge-invariant smearing method,
gauge fixing comes in as a necessity. We choose to work
on Coulomb gauge configurations, which leads to a some-
what better signal.

In order to improve the ground-state coupling, un-
smeared ends of the quark propagators are smeared in
a gauge-invariant manner using a Gaussian form. In the
case of s quark, we choose the smearing parameters so as
to give a root-mean-square radius of hr

l

i ⇠ 0.5 fm. We
have measured the size of the charm quark charge radii
to be small compared to the light and strange quarks,
both in mesons [8] and baryons [9, 10]. Motivated by
this observation, we adjust the smearing parameters to
obtain hr

c

i = hr
l

i/3.
The source-sink time separation is fixed to 1.09 fm

(t2 = 12a), which has been shown to be su�cient to
avoid excited state contaminations for electromagnetic
form factors [10]. Using translational symmetry, we have
employed multiple source-sink pairs by shifting them 12
lattice units in the temporal direction. All statistical er-
rors are estimated by a single-elimination jackknife anal-
ysis. We calculate the connected diagrams only and con-
sider the point-split lattice current

j
µ

= 1/2[q̄(x+µ)U †
µ

(1+�
µ

)q(x)�q̄(x)U
µ

(1��
µ

)q(x+µ)],
(23)

which is conserved by Wilson fermions.

III. RESULTS AND DISCUSSION

A. Baryon masses

The masses of the ⌦, ⌦(⇤)
c

, ⌦(⇤)
cc

and ⌦
ccc

baryons are
extracted from the shell-source/point-sink lattice two-
point function given in Eq.(7) by a simultaneous fit to
all spatial Lorentz indices. Our results are given in Ta-
ble II along with a comparison to the masses reported by
PDG and lattice collaborations.

Compared to the experimentally available results we

see around a 100 MeV deviation in case of the ⌦ and ⌦(⇤)
c

masses. Note that the di↵erences mainly arise from our
choice of the strange quark hopping parameter. In order
to avoid the partial-quenching e↵ects we have chosen the

s

to be same as the sea quark’s. It can be seen that our
⌦ mass is in good agreement with the mass reported by
the PAC-CS Collaboration [14]. Still, a 100 MeV discrep-
ancy is rather unsettling. To check the e↵ects, we have
re-analysed our data using the lattice evaluated [22] and
experimental masses [21] and found less than a 1% devia-
tion in the charge radii. The magnetic moments however
are directly a↵ected since the mass of the baryon is used
when we convert to nuclear magnetons (see Sec.IIID).

Choice of the quark action for the charm quark simula-
tions is an on-going debate. The mass of the ⌦

ccc

can be
taken as a good indicator for the aptness of the actions.
Compared to the other lattice simulations [13, 22, 23]

that utilise di↵erent actions, we see that the Clover ac-
tion with simple Fermilab interpretation produces satis-
factory results.
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FIG. 1. Strange (filled) and charm-quark (hollow) contri-
butions to the E0 form factor at the lowest allowed three-
momentum transfer (q2=0.183 GeV2). The contributions are
shown for single quark and normalised to unit charge. The fit
regions are t1 = [4, 7] for charm sector and t1 = [6, 9] for the
strange sector.
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FIG. 2. Same as Fig. 1 but for the M1 form factor. Fit region
is t1 = [4, 7] for all cases.

B. Form Factor correlation functions

In our simulations we evaluate each quark sector sep-
arately and normalise to unit charge contributions. The
baryon properties are then estimated by combining each
contribution by weighting them with their respective
quark numbers and electric charges as,

hOi = N
s

e
s

hO
s

i+N
c

e
c

hO
c

i, (24)

7

(⌦⇤
c

) and ⌦
ccc

appear to have similar charge radii while
the ⌦

cc

(⌦⇤
cc

) baryon has almost a vanishing charge ra-
dius.

Based on the similarity of the quark contributions
to the charge radii one can naively assume that the
quark sector contributions to the charge radii to be sim-
ilar for all spin-3/2 baryons that we consider so that,
hr2

E

is⌦ = hr2
E

is⌦⇤
c
= hr2

E

is⌦⇤
cc

= R2
s

and hr2
E

ic⌦⇤
c
= hr2

E

ic⌦⇤
cc

=

hr2
E

ic⌦ccc
= R2

c

. Using Eq. (24) we can derive a rela-
tion between the electric charge radii of the spin-3/2
baryons as,

�hr2
E

i⌦⇤
c
+ hr2

E

i⌦ccc

�
/2 = hr2

E

i⌦⇤
cc
. Com-

paring
�hr2

E

i⌦⇤
c
+ hr2

E

i⌦ccc

�
/2 = �0.011(8), as obtained

from such an estimation and the computed charge ra-
dius ⌦⇤

cc

, hr2
E

i⌦⇤
cc

= �0.012(6), this relation seems to
hold nicely. This implies that the individual quark con-
tributions for each flavor to charge radii are similar for
all baryons we consider here and their radii di↵er due to
di↵erent quark compositions they have.
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FIG. 7. The electric charge radius of the spin-1/2 ⌦c, ⌦cc and
spin-3/2 ⌦, ⌦⇤

c and ⌦⇤
cc baryons. Absolute values are shown

for a better comparison. Data points denoted by a triangle
indicates a negative value.

It may be instructive to compare the contributions
of the strange quark to the electric charge radii in the
case of ⌦⇤

c

(ssc), ⌦⇤
cc

(scc) and ⌅⇤(ssu), ⌃⇤(suu) baryons.
The latter have been calculated in Ref. [5]. Such a com-
parison would provide a better understanding as to how
the charge radii are a↵ected when the light quark is ex-
changed by a charm quark. A comparison of s-quark elec-
tric charge radii in ⌦⇤

c

- ⌅⇤ in Table V reveals the e↵ect
of changing the single u-quark by a c-quark: When the
singly represented quark is heavier, the s-quark charge
radius increases. In case of the ⌦⇤

cc

- ⌃⇤ baryons, the
doubly represented light quarks are changed to c-quarks.
While the current precision does not allow a clear con-
clusion, such a comparison again suggests an increase in
the charge radius.

TABLE V. Single strange quark contribution normalized to
the electric charge radii of the ⌦⇤

c and ⌦⇤
cc (normalized to

unit charge) in comparison to that of the decuplet ⌅⇤ and
⌃⇤. Decuplet values are taken from tables XI. and XII. of
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Findings for the electric charge radii

• Strange quark charge radius is insensitive to the
baryon quark-flavor composition.

• Charm-quark charge radius increases as the num-
ber of charm quarks increases in the composition
of the baryon.

• For singly charmed baryons, s- and c-quark charge
radii are not a↵ected by the spin-flip whereas the
charge radii of doubly charmed baryons increase.

• We find the electric charge radius of ⌦� to be
hr2

E

i⌦� = �0.326(21) fm2.

D. Magnetic moments

Magnetic moments of the baryons are related to the
Q2 = 0 value of the magnetic form factor M1. We evalu-
ate the magnetic dipole moment in units of nuclear mag-
netons,
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where m
N

is the physical nucleon mass and m
B

is the
baryon mass as obtained on the lattice.
Our numerical values for the magnetic moments are

listed in Table VI, which are also illustrated in Figs. 8
and 9. We find for spin-1/2 baryons that the contribu-
tion of a single quark to the magnetic moment signifi-
cantly increases when it is doubly represented. A sign
change is evident due to the spin flip in case of the ⌦

c

and ⌦
cc

baryons. The s-quark contributions in the spin-
3/2 sector have a tendency to decrease as the number
of s-quarks decreases. In contrast to this, the c-quark
contributions tend to decrease as the number of c-quarks
increases.
From a simple quark model perspective one would ex-

pect the quark magnetic moments to be the same re-
gardless of the spin of the baryon. However the evident
di↵erence between the spin-1/2 and the spin-3/2 configu-
rations for both strange and charm sectors indicates that
such a naive assumption does not hold.
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The latter have been calculated in Ref. [5]. Such a com-
parison would provide a better understanding as to how
the charge radii are a↵ected when the light quark is ex-
changed by a charm quark. A comparison of s-quark elec-
tric charge radii in ⌦⇤
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of changing the single u-quark by a c-quark: When the
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radius increases. In case of the ⌦⇤
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- ⌃⇤ baryons, the
doubly represented light quarks are changed to c-quarks.
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clusion, such a comparison again suggests an increase in
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• Strange quark charge radius is insensitive to the
baryon quark-flavor composition.

• Charm-quark charge radius increases as the num-
ber of charm quarks increases in the composition
of the baryon.
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radii are not a↵ected by the spin-flip whereas the
charge radii of doubly charmed baryons increase.

• We find the electric charge radius of ⌦� to be
hr2

E

i⌦� = �0.326(21) fm2.
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where m
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is the
baryon mass as obtained on the lattice.
Our numerical values for the magnetic moments are

listed in Table VI, which are also illustrated in Figs. 8
and 9. We find for spin-1/2 baryons that the contribu-
tion of a single quark to the magnetic moment signifi-
cantly increases when it is doubly represented. A sign
change is evident due to the spin flip in case of the ⌦
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and ⌦
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baryons. The s-quark contributions in the spin-
3/2 sector have a tendency to decrease as the number
of s-quarks decreases. In contrast to this, the c-quark
contributions tend to decrease as the number of c-quarks
increases.
From a simple quark model perspective one would ex-

pect the quark magnetic moments to be the same re-
gardless of the spin of the baryon. However the evident
di↵erence between the spin-1/2 and the spin-3/2 configu-
rations for both strange and charm sectors indicates that
such a naive assumption does not hold.
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It may be instructive to compare the contributions
of the strange quark to the electric charge radii in the
case of ⌦⇤
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(ssc), ⌦⇤
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(scc) and ⌅⇤(ssu), ⌃⇤(suu) baryons.
The latter have been calculated in Ref. [5]. Such a com-
parison would provide a better understanding as to how
the charge radii are a↵ected when the light quark is ex-
changed by a charm quark. A comparison of s-quark elec-
tric charge radii in ⌦⇤

c

- ⌅⇤ in Table V reveals the e↵ect
of changing the single u-quark by a c-quark: When the
singly represented quark is heavier, the s-quark charge
radius increases. In case of the ⌦⇤

cc

- ⌃⇤ baryons, the
doubly represented light quarks are changed to c-quarks.
While the current precision does not allow a clear con-
clusion, such a comparison again suggests an increase in
the charge radius.

TABLE V. Single strange quark contribution normalized to
the electric charge radii of the ⌦⇤

c and ⌦⇤
cc (normalized to

unit charge) in comparison to that of the decuplet ⌅⇤ and
⌃⇤. Decuplet values are taken from tables XI. and XII. of
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Findings for the electric charge radii

• Strange quark charge radius is insensitive to the
baryon quark-flavor composition.

• Charm-quark charge radius increases as the num-
ber of charm quarks increases in the composition
of the baryon.

• For singly charmed baryons, s- and c-quark charge
radii are not a↵ected by the spin-flip whereas the
charge radii of doubly charmed baryons increase.

• We find the electric charge radius of ⌦� to be
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i⌦� = �0.326(21) fm2.

D. Magnetic moments

Magnetic moments of the baryons are related to the
Q2 = 0 value of the magnetic form factor M1. We evalu-
ate the magnetic dipole moment in units of nuclear mag-
netons,
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where m
N

is the physical nucleon mass and m
B

is the
baryon mass as obtained on the lattice.
Our numerical values for the magnetic moments are

listed in Table VI, which are also illustrated in Figs. 8
and 9. We find for spin-1/2 baryons that the contribu-
tion of a single quark to the magnetic moment signifi-
cantly increases when it is doubly represented. A sign
change is evident due to the spin flip in case of the ⌦

c

and ⌦
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baryons. The s-quark contributions in the spin-
3/2 sector have a tendency to decrease as the number
of s-quarks decreases. In contrast to this, the c-quark
contributions tend to decrease as the number of c-quarks
increases.
From a simple quark model perspective one would ex-

pect the quark magnetic moments to be the same re-
gardless of the spin of the baryon. However the evident
di↵erence between the spin-1/2 and the spin-3/2 configu-
rations for both strange and charm sectors indicates that
such a naive assumption does not hold.
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It may be instructive to compare the contributions
of the strange quark to the electric charge radii in the
case of ⌦⇤
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(ssc), ⌦⇤
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(scc) and ⌅⇤(ssu), ⌃⇤(suu) baryons.
The latter have been calculated in Ref. [5]. Such a com-
parison would provide a better understanding as to how
the charge radii are a↵ected when the light quark is ex-
changed by a charm quark. A comparison of s-quark elec-
tric charge radii in ⌦⇤

c

- ⌅⇤ in Table V reveals the e↵ect
of changing the single u-quark by a c-quark: When the
singly represented quark is heavier, the s-quark charge
radius increases. In case of the ⌦⇤

cc

- ⌃⇤ baryons, the
doubly represented light quarks are changed to c-quarks.
While the current precision does not allow a clear con-
clusion, such a comparison again suggests an increase in
the charge radius.

TABLE V. Single strange quark contribution normalized to
the electric charge radii of the ⌦⇤

c and ⌦⇤
cc (normalized to

unit charge) in comparison to that of the decuplet ⌅⇤ and
⌃⇤. Decuplet values are taken from tables XI. and XII. of
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Findings for the electric charge radii

• Strange quark charge radius is insensitive to the
baryon quark-flavor composition.

• Charm-quark charge radius increases as the num-
ber of charm quarks increases in the composition
of the baryon.

• For singly charmed baryons, s- and c-quark charge
radii are not a↵ected by the spin-flip whereas the
charge radii of doubly charmed baryons increase.

• We find the electric charge radius of ⌦� to be
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i⌦� = �0.326(21) fm2.

D. Magnetic moments

Magnetic moments of the baryons are related to the
Q2 = 0 value of the magnetic form factor M1. We evalu-
ate the magnetic dipole moment in units of nuclear mag-
netons,
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where m
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is the physical nucleon mass and m
B

is the
baryon mass as obtained on the lattice.
Our numerical values for the magnetic moments are

listed in Table VI, which are also illustrated in Figs. 8
and 9. We find for spin-1/2 baryons that the contribu-
tion of a single quark to the magnetic moment signifi-
cantly increases when it is doubly represented. A sign
change is evident due to the spin flip in case of the ⌦
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and ⌦
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baryons. The s-quark contributions in the spin-
3/2 sector have a tendency to decrease as the number
of s-quarks decreases. In contrast to this, the c-quark
contributions tend to decrease as the number of c-quarks
increases.
From a simple quark model perspective one would ex-

pect the quark magnetic moments to be the same re-
gardless of the spin of the baryon. However the evident
di↵erence between the spin-1/2 and the spin-3/2 configu-
rations for both strange and charm sectors indicates that
such a naive assumption does not hold.
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TABLE II: The coupling constants g
DD⇢

, g
D

⇤
D

⇤
⇢

, the charge radius of D and D⇤ mesons together

with individual quark-sector contributions and meson masses (am
⇢

values are taken from [21]). We

also give the D, D⇤ and J/ masses at di↵erent valence light quark masses. The chiral-extrapolated

results are from linear and quadratic fits.

u,d
val

g
DD⇢

hr2
D

i (fm2) hr2
D,d

i (fm2) hr2
D,c

i (fm2) am
D

am
J/ 

0.13700 5.57(27) 0.098(8) 0.226(20) 0.040(9) 0.944(5) 1.453(5)

0.13727 5.03(28) 0.094(10) 0.232(29) 0.033(9) 0.919(4) 1.447(3)

0.13754 5.30(30) 0.124(13) 0.350(50) 0.033(12) 0.901(6) 1.434(6)

0.13770 4.85(41) 0.133(19) 0.308(85) 0.059(13) 0.896(10) 1.425(5)

Lin. Fit 4.84(34) 0.138(13) 0.342(67) 0.051(11)

Quad. Fit 4.90(56) 0.152(26) 0.320(118) 0.074(16)

u,d
val

g
D

⇤
D

⇤
⇢

hr2
D

⇤i (fm2) hr2
D

⇤
,d

i (fm2) hr2
D

⇤
,c

i (fm2) am
D

⇤ am
⇢

0.13700 5.93(41) 0.106(12) 0.270(31) 0.035(13) 1.006(7) 0.5060(30)

0.13727 5.75(36) 0.113(17) 0.296(44) 0.036(14) 0.981(8) 0.4566(36)

0.13754 6.69(47) 0.167(25) 0.497(92) 0.044(21) 0.971(7) 0.4108(31)

0.13770 5.57(66) 0.169(30) 0.404(127) 0.075(26) 0.940(9) 0.3895(94)

Lin. Fit 5.94(56) 0.185(24) 0.475(94) 0.071(16)

Quad. Fit 5.42(94) 0.192(43) 0.406(156) 0.096(29)

finite-volume e↵ects in our present calculations.

We calculate only connected diagrams in this work. This means we neglect the e↵ect

of the disconnected diagram, where the external field is inserted in a sea-quark loop which

in turn interacts with the meson two-point diagram with a gluon. The contribution of the

disconnected diagrams is expected to cancel as long as we have an isovector field coupled

to the meson as in the case of rho or pion couplings. A direct calculation of such diagrams

appearing here only in the case of electromagnetic form factor, which has an isoscalar part

as well as an isovector part, is di�cult and numerically demanding. Their contribution has

been found to be consistent with zero in the case of nucleon electric form factors [35]. We

expect them to give negligible contributions also in the case charm-meson electromagnetic
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FIG. 8: The chiral extrapolations for electric charge radii
of Σ++

c , Ξ++
cc and Ω+

cc in (amπ)
2. We show the fits to con-

stant, linear and quadratic forms. The shaded regions are the
maximally allowed error regions, which give the best fit to
data.

B. Lattice evaluation of the data

In order to evaluate the magnetic moments, we need to
extrapolate the magnetic form factor GM to −q2 ≡ Q2 =
0, while the electric charge, which is defined as GE(0),
can be directly computed. We use the following dipole
form to describe the Q2 dependence of the baryon form
factors:

GE,M (Q2) =
GE,M (0)

(1 +Q2/Λ2
E,M )2

. (17)

It is well known that this dipole approximation gives
a good description of experimental electric form-factor
data of the proton. Note that the electric charges of the
baryons, GE(0), are obtained in our simulations to a very
good accuracy.
Fig. 6 and 7 display the electric form factors of Σ++

c ,
Ξ++
cc and Ω+

cc, as normalized with their electric charges,
and the magnetic form factors of Ξ+

cc, Ω
+
cc, Ω

0
c , Σ

0
c and

Σ++
c as functions of Q2. We show the lattice data and the

fitted dipole forms for all the quark masses we consider.
As can be seen from the figures, the dipole form describes
the lattice data quite successfully with high-quality fits.
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FIG. 9: The chiral extrapolations for magnetic charge radii
of Σ0,++

c , Ξ+
cc, Ω0

c and Ω+
cc. We show the fits to constant,

linear and quadratic forms.

We can extract the electromagnetic charge radii of the
baryons from the slope of the form factor at Q2 = 0,

⟨r2E,M ⟩ = − 6

GE,M(0)

d

dQ2
GE,M (Q2)

∣∣∣∣
Q2=0

. (18)

To evaluate the charge radii with the above formula, we
will use the dipole form in Eq. (17), which yields

⟨r2E,M ⟩ = 12

Λ2
E,M

. (19)

Then the charge radii can be directly calculated using the
values of dipole masses as obtained from our simulations.
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FIG. 8: The chiral extrapolations for electric charge radii
of Σ++

c , Ξ++
cc and Ω+

cc in (amπ)
2. We show the fits to con-

stant, linear and quadratic forms. The shaded regions are the
maximally allowed error regions, which give the best fit to
data.

B. Lattice evaluation of the data

In order to evaluate the magnetic moments, we need to
extrapolate the magnetic form factor GM to −q2 ≡ Q2 =
0, while the electric charge, which is defined as GE(0),
can be directly computed. We use the following dipole
form to describe the Q2 dependence of the baryon form
factors:

GE,M (Q2) =
GE,M (0)

(1 +Q2/Λ2
E,M )2

. (17)

It is well known that this dipole approximation gives
a good description of experimental electric form-factor
data of the proton. Note that the electric charges of the
baryons, GE(0), are obtained in our simulations to a very
good accuracy.
Fig. 6 and 7 display the electric form factors of Σ++

c ,
Ξ++
cc and Ω+

cc, as normalized with their electric charges,
and the magnetic form factors of Ξ+

cc, Ω
+
cc, Ω

0
c , Σ

0
c and

Σ++
c as functions of Q2. We show the lattice data and the

fitted dipole forms for all the quark masses we consider.
As can be seen from the figures, the dipole form describes
the lattice data quite successfully with high-quality fits.

0.2

0.4

0.6

0.8

1 Lin. Fit
Quad. Fit
Lattice Data
Chiral Point

c
<r

 2 M
,!

   
> 

[fm
2 ]

0

-0.9

-0.8

-0.7

-0.6

-0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

μ "
  [

 μ N
 ]

c0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.06

0.12

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

<r
 2 M

,"
   

> 
[fm

2 ]

(a m#)
2

cc+

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.32

0.35

0.38

0.41

0.44

0.47

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(a m#)
2

μ "
  [

 μ N
 ]

cc+
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.2

0.3

0.4

0.5

0.6

0.7
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Cons.&Fit

<r
 2 M

,"
  >

 [f
m

2 ]
c0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.15

0.25

0.35

Lin. Fit
Quad. Fit
Lattice Data
Chiral Point

<r
 2 E,

! 
   

 >
 [f

m
2 ]

+
+ c

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.02

0.04

0.06

0.08

0.1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Cons.&Fit

(a m#)
2

<r
 2 E,

" 
 >

 [f
m

2 ]
cc+

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

<r
 2 M

,$
   

  >
 [f

m
2 ]

+ cc

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

<r
 2 M

,!
   

  >
 [f

m
2 ]

+
+

c

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

1

1.5

2

2.5

3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

μ !
   

  [
 μ N

 ]
+
+ c

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

-1.4

-1.2

-1

-0.8

-0.6

Cons. Fit
Lin. Fit
Quad. Fit
LatticeData
Chiral Point

μ !
  [

 μ N
 ]

0 c

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

<r
 2 E,

$ 
   

 >
 [f

m
2 ]

+ cc

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.1

0.14

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

<r
 2 E,

$ 
   

 >
 [f

m
2 ]

+
+

cc

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.38

0.42

0.46

μ $
   

  [
 μ N

 ]
+ cc

FIG. 9: The chiral extrapolations for magnetic charge radii
of Σ0,++

c , Ξ+
cc, Ω0

c and Ω+
cc. We show the fits to constant,

linear and quadratic forms.

We can extract the electromagnetic charge radii of the
baryons from the slope of the form factor at Q2 = 0,

⟨r2E,M ⟩ = − 6

GE,M(0)

d

dQ2
GE,M (Q2)

∣∣∣∣
Q2=0

. (18)

To evaluate the charge radii with the above formula, we
will use the dipole form in Eq. (17), which yields

⟨r2E,M ⟩ = 12

Λ2
E,M

. (19)

Then the charge radii can be directly calculated using the
values of dipole masses as obtained from our simulations.
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FIG. 10: The chiral extrapolations for magnetic moment of
Σ0,++

c , Ξ+
cc, Ω

0
c and Ω+

cc. We show the fits to constant, linear
and quadratic forms.

The magnetic moment is defined as µB =
GM (0)e/(2mB) in natural units. We obtain GM (0) by
extrapolating the lattice data to Q2 = 0 via the dipole
form in Eq. (17) as explained above. We evaluate the
magnetic moments in nuclear magnetons using the rela-
tion

µB = GM (0)

(
e

2mB

)
= GM (0)

(
mN

mB

)
µN , (20)

where mN is the physical nucleon mass and mB is the
baryon mass as obtained on the lattice.
Our numerical results for the form factors are given

in Tables IV and V, in Appendix. We give the electric
and magnetic charge radii in fm2, the values of mag-
netic form factors at Q2 = 0 (GM,B(0)) and the mag-
netic moments (µB) in nuclear magnetons at each quark
mass we consider. These numerical values are illustrated
in Figs. 8, 9, 10 with their chiral extrapolations for the
electric radii, magnetic charge radii and the magnetic
moments of the baryons, respectively. To obtain the val-
ues of the observables at the chiral point, we perform fits
that are constant, linear and quadratic in m2

π:

fcon = c1, (21)

flin = a1 m
2
π + b1, (22)

fquad = a2 m
4
π + b2 m

2
π + c2, (23)

where a1,2, b1,2, c1,2 are the fit parameters.

In order to evaluate the quality of the fits, we find
their χ2 per degree of freedom value and the p-values.
The chiral extrapolations with linear and quadratic forms
deviate from each other with their one to two standard
deviations in some cases, in particular for Σc. A closer
inspection with the χ2 per degree of freedom and the p-
values taken into account reveals that the quadratic form
is favored in the case of charge radii and the linear form
is favored in the case of magnetic moments.

In the case of charmed-strange baryons Ωc and Ωcc,
the pion-mass dependence is solely due to sea-quark ef-
fects. As can be seen in the lowest panels of Fig. 8 and
Fig. 9, the dependence of charge radii for these baryons
fluctuates as we approach the chiral limit, in contrary to
the naive expectation. This fluctuation may also be due
to uncontrolled systematic errors. An intuitive model is
to fit these data to a constant or a linear form, since a
more complex form is not known for sea-quark depen-
dence. Unfortunately, the fluctuating data results in a
poor fit to a linear or quadratic form in the case of Ωc

and Ωcc charge radii. Note that the data in other cases
can be nicely fit to linear or quadratic forms.

In assessing the best fit function to data, we also
account for the consistency between the properties of
the baryons as extrapolated to the quark-mass point
m2

π = m2
ηss

. Unfortunately we do not have the value
of mηss at the SU(3) symmetric point. However, we
can make an estimation using the value mηss = 0.39947,
which was extracted by PACS-CS on a lattice with κud =
κsea = 0.13700 and κs = 0.13640. The charge radii and
the magnetic moments of Ξ+

cc and Ω+
cc, as well as those

of Σ0
c and Ω0

c , are expected coincide at this point. The
properties of the Σ++

c baryon as extrapolated to this re-
gion can be compared with those of an unphysical baryon
similar to Ω++

c but the s quarks are assigned with elec-
tric charge 2/3 —a state that can be easily created on
our setup with trivial replacements.
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RESULTS 
Charmed, strange baryon extrapolations


