# Real-time simulation of dissipation driven quantum systems 

Debasish Banerjee

with F. Hebenstreit, F.-J. Jiang, M. Kon, U.-J. Wiese

DESY (Zeuthen)
Lattice 2015

## Outline

Introduction

Set-up of the problem

## Real-time evolution in a large quantum system

## Outlook

## The Schwinger-Keldysh (closed-time) contour

- Quantum many-body system governed by $\hat{H}(t)$
- Initial state at $t=0$ specified by density-matrix $\hat{\rho}(0)$.
- Evolution of the density matrix: $\frac{d \hat{\rho}(t)}{d t}=-i[\hat{H}(t), \hat{\rho}(t)]$
- Formal solution: $\hat{\rho}(t)=\hat{U}(t, 0) \hat{\rho}(0)[\hat{U}(t, 0)]^{\dagger}$

$$
\begin{aligned}
\hat{U}\left(t, t^{\prime}\right) & =\mathcal{T} \exp \left[-i \int_{t}^{t^{\prime}} \hat{H}(\tau) d \tau\right] \\
& =\lim _{\epsilon \rightarrow 0} e^{-i \epsilon \hat{H}\left(t^{\prime}-\epsilon\right)} \cdots e^{-i \epsilon \hat{H}(t+\epsilon)} e^{-i \epsilon \hat{H}(t)}
\end{aligned}
$$

- Calculations with normalized density matrix:

$$
\begin{aligned}
&\langle\hat{\mathcal{O}}(t)\rangle=\operatorname{Tr}\{\hat{\mathcal{O}} \hat{\rho}(t)\}=\operatorname{Tr}\{\hat{U}(0, t) \hat{\mathcal{O}} \hat{U}(t, 0) \hat{\rho}(0)\} \\
& \begin{array}{l}
\text { "forward-backward" evolution } \\
\\
\\
{ }_{\beta}{ }^{\beta}=-=-=-=-=-=-=-=-=-=-z
\end{array} \\
& \text { along the real-time contour. }
\end{aligned}
$$

## Measurements and Lindblads

- Idea 1: repeated measurements on the system to reduce entanglement.
- Measurements of an observable $\hat{O}_{k}$ at time $t_{k}$ can be represented by projection operator $\hat{P}_{O_{k}}$.
- Projects on to the sub-space of the Hilbert space spanned by eigenvectors of $\hat{O}_{k}$ with eigenvalue $O_{k}$.
$-\hat{P}_{O_{k}}^{\dagger}=\hat{P}_{O_{k}} ; \quad \hat{P}_{O_{k}}^{2}=\hat{P}_{O_{k}} ; \quad \sum_{O_{k}} \hat{P}_{O_{k}}=1$
- Idea 2: stochastic measurements represent the Markovian, non-unitary dynamics of a quantum system interacting with an environment to a good approximation.
- The effect of the environment on the system is represented by the so-called Lindblad operators, which are related to the projection operators.
- They represent the quantum jumps the system makes while interacting with the environment, and given by $\hat{L}_{O_{k}}=\sqrt{\epsilon \gamma} \hat{P}_{O_{k}}$.
- $\gamma \rightarrow$ strength of the coupling to environment and $\epsilon \rightarrow$ discrete time.
- Schrödinger eqn $\longrightarrow$ Lindblad eqn:

$$
\begin{aligned}
\frac{d \rho(t)}{d t} & =-i[H, \rho]+\frac{1}{\epsilon} \sum_{o_{k}}\left[L_{o_{k}} \rho(t) L_{o_{k}}^{\dagger}-\frac{1}{2}\left\{L_{o_{k}}^{\dagger} L_{o_{k}}, \rho(t)\right\}\right] \\
& =\gamma \sum_{o_{k}}\left[P_{o_{k}} \rho(t) P_{o_{k}}-\rho(t)\right] \text { (without H) }
\end{aligned}
$$

## Why is the problem with measurements easier?





## Path-Integral with measurements

- Time-evolution $t_{k} \rightarrow t_{k+1}$ described by $\hat{U}\left(t_{k+1}, t_{k}\right)=\hat{U}\left(t_{k}, t_{k+1}\right)^{\dagger}$.
- At time $t_{k}(k \in\{1,2, \cdots, N\})$ observable $\hat{O}_{k}$ measured with eigenvalue $O_{k}$.
- Consider an initial state, specified by a normalized density matrix $\rho=\sum_{i} p_{i}|i\rangle\langle i|$; with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$.
- Probability of making a single measurement of $\hat{O}_{k}$ at time $t_{k}$ while evolving from $t_{i}$ to $t_{f}$ : $p_{\rho f}\left(O_{k}\right)=\sum_{i}\langle i| \hat{U}\left(t_{i}, t_{k}\right) \hat{P}_{O_{k}} \hat{U}\left(t_{k}, t_{f}\right)|f\rangle\langle f| \hat{U}\left(t_{f}, t_{k}\right) \hat{P}_{O_{k}} \hat{U}\left(t_{k}, t_{i}\right)|i\rangle p_{i}$
- With many measurements,

$$
\begin{aligned}
p_{\rho f}\left(O_{1}, O_{2}, \cdots, O_{N}\right)= & \sum_{i}\langle i| \hat{U}\left(t_{i}, t_{1}\right) \hat{P}_{O_{1}} \hat{U}\left(t_{1}, t_{2}\right) \hat{P}_{O_{2}} \cdots \hat{P}_{O_{N}} \hat{U}\left(t_{N}, t_{f}\right)|f\rangle \\
& \langle f| \hat{U}\left(t_{f}, t_{N}\right) \hat{P}_{O_{N}} \cdots \hat{P}_{O_{2}} \hat{U}\left(t_{2}, t_{1}\right) \hat{P}_{O_{1}} \hat{U}\left(t_{1}, t_{i}\right)|i\rangle p_{i}
\end{aligned}
$$

- For PI, insert complete set of states $\sum_{n_{k}}\left|n_{k}\right\rangle\left\langle n_{k}\right|=\mathbb{I} ; \sum_{n_{k}^{\prime}}\left|n_{k}^{\prime}\right\rangle\left\langle n_{k}^{\prime}\right|=\mathbb{I}$ for the top and bottom contours respectively.
- Unavoidable sign problem for $\left\langle n_{k}\right| \hat{U}\left(t_{k}, t_{k+1}\right)\left|n_{k+1}\right\rangle$ and/or $\left\langle n_{k+1}\right| \hat{U}\left(t_{k+1}, t_{k}\right)\left|n_{k}\right\rangle$.


## Zeroth attempt: remove the Hamiltonian

- Take an extreme case: switch off the Hamiltonian completely for the real-time evolution.

$$
\hat{U}\left(t_{k+1}, t_{k}\right)=\mathbb{I} .
$$

Can the real-time evolution still be interesting?

- Time-evolution needs to be driven entirely by non-commuting measurements. Need to calculate the matrix elements of projection operators such as $\left\langle n_{k}\right| \hat{P}_{O_{k}}\left|n_{k+1}\right\rangle$.
- Use the re-writing:

$$
\begin{aligned}
\left\langle n_{k}\right| \hat{P}_{O_{k}}\left|n_{k+1}\right\rangle\left\langle n_{k+1}^{\prime}\right| \hat{P}_{O_{k}}\left|n_{k}^{\prime}\right\rangle & =\left\langle n_{k}\right| \hat{P}_{O_{k}}\left|n_{k+1}\right\rangle\left\langle n_{k}^{\prime}\right| \hat{P}_{O_{k}}^{\dagger}\left|n_{k+1}^{\prime}\right\rangle \\
& =\left\langle n_{k} n_{k}^{\prime}\right|\left(\hat{P}_{O_{k}} \otimes \hat{P}_{O_{K}}^{T}\right)\left|n_{k} n_{k+1}^{\prime}\right\rangle
\end{aligned}
$$

- With only the measurements:

$$
\begin{aligned}
p_{\rho f}\left(o_{1}, o_{2}, \cdots, o_{N}\right) & =\sum_{i}\langle i| P_{o_{1}} P_{o_{2}} \cdots P_{o_{N}}|f\rangle\langle f| P_{o_{N}} \cdots P_{o_{2}} P_{o_{1}}|i\rangle p_{i} \\
& =\sum_{i} p_{i}\langle i|\left(P_{o_{1}} \otimes P_{o_{1}}^{T}\right)\left(P_{o_{2}} \otimes P_{o_{2}}^{T}\right) \cdots\left(P_{o_{N}} \otimes P_{o_{N}}^{T}\right)|f f\rangle
\end{aligned}
$$

- In the doubled Hilbert space of states $\left|n_{k} n_{k}^{\prime}\right\rangle$, for both pieces of the Keldysh contour (using $\left\langle n_{0} n_{0}^{\prime}\right|=\langle i i| \&\left|n_{N+1} n_{N+1}^{\prime}\right\rangle=|f f\rangle$ ):

$$
p_{\rho f}\left(o_{1}, o_{2}, \cdots, o_{N}\right)=\sum_{i} p_{i} \sum_{n_{1} n_{1}^{\prime}} \cdots \sum_{n_{N} n_{N}^{\prime}} \prod_{k=0}^{N}\left\langle n_{k} n_{k}^{\prime}\right| P_{o_{k}} \otimes P_{o_{k}}^{T}\left|n_{k+1} n_{k+1}^{\prime}\right\rangle
$$

## A concrete example

- For a model of dissipation, intermediate results are unimportant sum over all possible measurement results $\longrightarrow \widetilde{P_{k}}=\sum_{o_{k}} P_{o_{k}} \otimes P_{o_{k}}^{T}$,
- The probability $p_{\rho f}$ to reach the final state $|f\rangle$ :
$p_{\rho f}=\sum_{o_{1}} \sum_{o_{2}} \cdots \sum_{o_{N}} p_{\rho f}\left(o_{1}, o_{2}, \cdots, o_{N}\right)=\sum_{i} p_{i} \sum_{n_{1}, n_{1}^{\prime}} \cdots \sum_{n_{N}, n_{N}^{\prime}} \prod_{k=0}^{N}\left\langle n_{k} n_{k}^{\prime}\right| \tilde{P}_{k}\left|n_{k+1} n_{k+1}^{\prime}\right\rangle$
- Example: Two spins $\vec{S}_{x}$ and $\overrightarrow{S_{y}}$ forming total spin eigenstates:

$$
|1,1\rangle=\uparrow \uparrow,|1,0\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow),|1,-1\rangle=\downarrow ;|0,0\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

- Projection operator on spin-1: $P_{1}=|1,1\rangle\langle 1,1|+|1,0\rangle\langle 1,0|+|1,-1\rangle\langle 1,-1|$
- Projection operator on spin-0: $P_{0}=|0,0\rangle\langle 0,0|$

$$
P_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & & 1
\end{array}\right) \quad P_{0}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & & 0
\end{array}\right)
$$

- Negative entries in $P_{0}$ give rise to a sign problem.
- Measurements can also induce sign problems!


## The sign-problem and it's solution

In the doubled Hilbert space, $P_{1} \otimes P_{1}^{T}, P_{0} \otimes P_{0}^{T}$ are $16 \times 16$ matrix with entries:


Legend: black $\rightarrow 1$; blue $\rightarrow \frac{1}{2}$; green $\rightarrow \frac{1}{4}$; red $\rightarrow-\frac{1}{4}$ Summing over all possible results eliminates the sign problem.

- Example of two-spin system easily extendable to large systems, where the environment couples to the total spin $\left(\vec{S}_{x}+\vec{S}_{y}\right)^{2}$ of the spin-pairs $\vec{S}_{x}$ and $\vec{S}_{y}$ in a spin system.
- System of quantum spins $\frac{1}{2}$ on a square lattice $L \times L$ with periodic boundary conditions.
- To define the initial density matrix $\hat{\rho}=\exp (-\beta \hat{H})$, use the Heisenberg anti-ferromagnet: $\hat{H}=J \sum_{<x y>} \vec{S}_{x} \cdot \vec{S}_{y} ; J>0$.


## Extension to large systems






- Sporadic non-commuting measurements drive dynamics from initial state.
- Initial state $\longrightarrow$ low-T (large $\beta$ ) of antiferromagnet, Néel state.
- Order parameters: uniform and staggered magnetizations

$$
M_{u}=\frac{1}{2} \sum_{x} S_{x}^{3} ; \quad M_{s t a g}=\frac{1}{2} \sum_{x}(-1)^{x_{1}+x_{2}} S_{i}^{3}
$$




## Lindblad evolution: Structure factors



- Evolution of the Fourier-modes can be parametrized by $\left.\left.\langle | \widetilde{S(p)}\right|^{2}\right\rangle \rightarrow A(p)+B(p) \exp (-t / \tau(p))$
- For small momenta, $1 /[\gamma \tau(p)]=C|p a|^{r}$ with $r=1.9(2)$
- Clearly identifiable two different time scales.
- Final state at $t \rightarrow \infty$ is a paramagnet with short range correlations.
- More extensive investigations PRB 92 (2015), 3, 035116 by Hebenstreit et. al. suggest that this exponent might be unique for all 2 -spin observables, and evolution about a conserved quantity for various quantum-spin Hamiltonians in (2+1)-d.
- Dynamic universality classes.


## Phase Transitions in real-time?




- Staggered susceptibility $\left\langle M_{s}^{2}\right\rangle / L^{2} \propto L^{2}$ for small-t.
- For large-t, this becomes independent of volume.
- Breaking of SU(2) symmetry restored at late (real) times.
- Does a phase transition to the symmetry-restored phase take place at finite time $t_{c}$ ?
- Left plot: $\chi_{s} / L^{2}=\left\langle M_{s}^{2}\right\rangle / L^{4}$.
- Right plot: Binder cumulant $\left\langle M_{s}^{4}\right\rangle /\left\langle M_{s}^{2}\right\rangle^{2}$.
- Curves do not cross, indicating the transtion is complete only for infinite real-times.


## Chi PT for low energy anti-ferromagnets

- SU(2) Heisenberg antiferromagnets in (2+1)-d share many features with QCD.
- For both the systems, the low-energy effective theory can be captured by an effective field theory, which describes the magnon-magnon interaction in anti-ferromagnets, similar to the pion interactions in QCD.

$$
S[\vec{e}]=\int d^{2} x d t \frac{\rho_{s}}{2}\left(\partial_{i} \vec{e} . \partial_{i} \vec{e}+\frac{1}{c^{2}} \partial_{t} \vec{e} . \partial_{t} \vec{e}\right)
$$

where is a Goldstone boson (magnon) field in
$S U(2) / U(1)=S^{2} ; \quad \vec{e}(x)=\left(e_{1}(x), e_{2}(x), e_{3}(x)\right), \quad \vec{e}(x)^{2}=1$

- The low-energy constants of the theorys are the staggered magnetization $\mathcal{M}_{s}$, the spin stiffness $\rho_{s}$, the speed of sound $c$.
- check the applicability of Eulidean time methods in real-time.
- For example, take the expression for $\chi_{s}$

$$
\chi_{s}=\frac{\mathcal{M}_{s}^{2} L^{2} \beta}{3}\left\{1+2 \frac{c}{\rho_{s} L I} \beta_{1}(I)+\left(\frac{c}{\rho_{s} L I}\right)^{2}\left[\beta_{1}(I)^{2}+3 \beta_{2}(I)\right]+\mathcal{O}\left(\frac{1}{L^{3}}\right)\right\}
$$

- Make the LEC's time dependent and see real-time behaviour.


## Chiral PT to study the real-time evolution




- Exponential decay of the staggered magnetization: $\mathcal{M}_{s}(t)=\mathcal{M}_{s}(0) \exp (-t / \tau)$
- The lengthscale $\xi=c /\left(2 \pi \rho_{s}\right)$ diverges as the spin stiffness $\rho_{s}$ vanishes.
- Destruction of order takes place very rapidly $t=1 / \gamma$ in contrast to the diffusion process, which is a power law.


## In progress: $1,2,3, \cdots, \infty$

- Ref. PRB 92 (2015), 3, 035116 by Hebenstreit et. al. studied all possible measurement processes using two-spin observables for a variety of models (ferro, anti-ferro Heisenberg model, XY) in $(2+1)$-d. Besides confirming the general picture in this study, we find similar behaviour of the diffusion of the momentum modes around the conserved quantity.
- A real-time transport (spin diffusion) process was studied in Ref: arXiv: 1505.00135 by present authors. Diffusion of ferromagnetic order into an anti-ferromagnet when the systems are kept in contact under the influence of this measurement process.
- Cooling into dark states, instead of heating up.
- Different initial states in different phases in a model with richer phase structure.
- Bring back the Hamiltonian.
- Progess seems possible with fermions in the game as well.


## Thank you for your attention



Diffusion of $M_{u}$ from a ferromagnetic initial state to an anti-ferromagnetic one at different times $t=0, t=50 / \gamma$

$$
\text { and } t=500 \neq \gamma \text {. }
$$

## Backup 1: Models and Algorithms

- The existing highly efficient loop-cluster algorithm for anti-ferromagnets can be naturally extended to this particular case of real-time evolution.
- Resulting clusters are closed loops extending in both Euclidean and real-time, which are updated together.

backward real-time block
Identical clusters in the forward and backward real-time evolution. Summed over "all intermediate measurements", and all spins are measured in the final state. Cluster bonds are decided with the matrix elements in the matrix $\widetilde{P}=P_{1} \otimes P_{1}^{T}+P_{0} \otimes P_{0}^{T}$.

