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The Schwinger-Keldysh (closed-time) contour
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Quantum many-body system governed by H(t)
Initial state at t = 0 specified by density-matrix 5(0).
Evolution of the density matrix: dﬁTE’) = —i[A(t), p(1)]
Formal solution: p(t) = U(t,0)5(0)[U(t, 0)]T

~ t/ ~

uity = Texp|—i H(r)dr

t
= (i effd:/(tlfs) L e—ieFl(He)e—ieF/(t)
e—0
Calculations with normalized density matrix:
5 @) =T {Op(t)} = T{ U0, HOU(1,0)5(0) }

> “forward-backward” evolution
along the real-time contour.

Ol o e e o= » Entanglement makes numerics

B t hard.



Measurements and Lindblads

> Idea 1: repeated measurements on the system to reduce entanglement.

> Measurements of an observable Oy at time t can be represented by projection
operator Po, .

> Projects on to the sub-space of the Hilbert space spanned by eigenvectors of O with
eigenvalue Ok.
pt _p - P2 _p - P, —

> Pok = Po,; Pok = Po,; Zok Po, =1

> Idea 2: stochastic measurements represent the Markovian, non-unitary dynamics of a
quantum system interacting with an environment to a good approximation.

» The effect of the environment on the system is represented by the so-called Lindblad
operators, which are related to the projection operators.

»> They represent the quantum jumps theAsystem makes while interacting with the
environment, and given by Lo, = \/evPo, .

» ~ — strength of the coupling to environment and ¢ — discrete time.

» Schrodinger eqn — Lindblad egn:

d’jT(f) —i[H, p] + - Z[Lokp(t 2{L Lok,p(t)}}

7> [Po,p(t)Po, — p(t)] (without H)

Ok



Why is the problem with measurements easier?
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Path-Integral with measurements

> Time-evolution tx — tx, 1 described by U(tx,+, t) = U(tx, tey1).
> Attime t, (k € {1,2,--- , N}) observable O, measured with eigenvalue O.

> Consider an initial state, specified by a normalized density matrix p = >, p;|i) (i[; with
0<p<tand ) p =1.

> Probability of making a single measurement of @k at time #, while evolving from f; to #:
Por(Ok)= 3 (iU, t) Po, Ui, t)If) (FlU(t, t)Po, Uti, )i} pi

> With many measurements, o R L
Poi (01, Oz, -, On) = >=; (ilU(t, 1) Po, U(ty, ) Po, - - - Po, U(t, t)If)
(flU(t, tn)Poy, - - - Po, U(t2, t1) Po, U(t, 8)11) pi

> For P, insert complete set of states >, [n)(nc| =I; Zn',( [nj){nj | = T for the top and
bottom contours respectively.

> Unavoidable sign problem for (ng| U(tx, ti1)| Mkt ) andior (M1 |U(ters, t)|nk).-



Zeroth attempt: remove the Hamiltonian

> Take an extreme case: switch off the Hamiltonian completely for the real-time evolution.
U(tysq, t6) =L

Can the real-time evolution still be interesting?
» Time-evolution needs to be driven entirely by non-commuting measurements. Need to

calculate the matrix elements of projection operators such as (nk|Po, [Mk-1)-
> Use the re-writing:

(M Poy |Mk1) (M 41 Poy ) = (i Poy Imics 1) (PG, 1y 4)
= (] (Po, ® PL, ) Inerty )
> With only the measurements:
Ppr(01, 02, -+, 0n) = > {i|Poy Poy - - - Poy |F){f|Poy, - - - Poy Poy |1} pj
= 32 Pi{iil(Poy ® P, )(Po, ® Pg,) - (Poy ® PJ,)Iff)

> In the doubled Hilbert space of states |, n; ), for both pieces of the Keldysh contour
(using (nomp| = (il & g1y, ) = |FF)):

N
Pyr(01, 02, -+, 0n) = Z PiZ"' Z H(nkn;(‘PDk ® PoTk|nk+1”f<+1>

i nyny nyny, k=0



A concrete example

> For a model of dissipation, intermediate results are unimportant
sum over all possible measurement results — Px =>-, Po, ® Ei

» The probability p,r to reach the final state |f):

N
Por =2 > Ppr(01,02, - ,0on) =D 0 > o+ > | [l Pelnesmi 1)

01 0o oy i ny,nj nN,n;V k=0

> Example: Two spins Sy and S, forming total spin eigenstates:
\ 1 N \ — |- — 1 —
1,1) =1, 1,0) = \E(T\» 1), [1,=1) =ll; [0,0) = \/E(N )
» Projection operator on spin-1: Py = [1,1)(1, 1| + [1,0)(1,0| + |1, —1){1, —1]
> Projection operator on spin-0: Py = |0, 0)(0, 0|
1 0 0 O 0 O 0 O
o 1 I o o 1 _—1 o
= = 2 2
P 0 i 2 0 Po o -1 1 o
0 O 1 0 O 0
> Negative entries in P, give rise to a sign problem.
>

Measurements can also induce sign problems!



The sign-problem and it’s solution

In the doubled Hilbert space, P ® P1T, Py ® POT are 16 x 16 matrix with entries:

Legend: black — 1;blue — %;green — I;red — —1
Summing over all possible results eliminates the sign problem.

»> Example of two-spin system easily extendable to large systems, where the environment
couples to the total spin (Sx + Sy)? of the spin-pairs Sy and Sy in a spin system.
» System of quantum spins % on a square lattice L x L with periodic boundary conditions.

»> To define the initial density matrix p = exp(f/jlfl), use the Heisenberg
anti-ferromagnet: A =J>_,  S¢-Sy; J > 0.



Extension to large systems
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»> Sporadic non-commuting measurements drive dynamics from initial state.
> |Initial state — low-T (large 3) of antiferromagnet, Néel state.
» Order parameters: uniform and staggered magnetizations
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Lindblad evolution: Structure factors
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> Ev/(lu/tion of the Fourier-modes can be parametrized by

(IS(p)[2) — A(p) + B(p) exp(—t/7(p))

For small momenta, 1/[v7(p)] = C|pa|" with r = 1.9(2)

Clearly identifiable two different time scales.

Final state at t — oo is a paramagnet with short range correlations.

More extensive investigations PRB 92 (2015), 3, 035116 by Hebenstreit et. al. suggest
that this exponent might be unique for all 2-spin observables, and evolution about a
conserved quantity for various quantum-spin Hamiltonians in (2+1)-d.

» Dynamic universality classes.
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Phase Transitions in real-time?
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> Staggered susceptibility (M2) /L2 oc L? for small-t.

> For large-t, this becomes independent of volume.

»> Breaking of SU(2) symmetry restored at late (real) times.

»> Does a phase transition to the symmetry-restored phase take place at finite time #:?
> Left plot: xs/L% = (M2)/L*.

> Right plot: Binder cumulant (M%) /(M2)2.

> Curves do not cross, indicating the transtion is complete only for infinite real-times.



Chi PT for low energy anti-ferromagnets

> SU(2) Heisenberg antiferromagnets in (2+1)-d share many features with QCD.

»> For both the systems, the low-energy effective theory can be captured by an effective
field theory, which describes the magnon-magnon interaction in anti-ferromagnets,
similar to the pion interactions in QCD.

R
S[8] = /dzxdt@ 8,8.0,8 + — 9,8.9,8
2 c?
where is a Goldstone boson (magnon) field in

SU(2)/U(1) = $%; &(x) = (e1(x), e2(x), e3(x)), &(x)* =1

> The low-energy constants of the theorys are the staggered magnetization Ms, the spin
stiffness ps, the speed of sound c.

» check the applicability of Eulidean time methods in real-time.
» For example, take the expression for xs

MEL23 c c \? 1
Xs=—% {1+2psuﬂ1(/)+<psu) [61(/)2+3B2(/)]+0(L3)}

> Make the LEC’s time dependent and see real-time behaviour.



Chiral PT to study the real-time evolution
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> Exponential decay of the staggered magnetization: Ms(t) = Ms(0) exp(—t/7)
> The lengthscale £ = ¢/(2mps) diverges as the spin stiffness ps vanishes.

> Destruction of order takes place very rapidly ¢ = 1/~ in contrast to the diffusion
process, which is a power law.



In progress: 1,2,3, ---, 00

| 2

Ref. PRB 92 (2015), 3, 035116 by Hebenstreit et. al.
studied all possible measurement processes using
two-spin observables for a variety of models (ferro,
anti-ferro Heisenberg model, XY) in (2 + 1)-d. Besides
confirming the general picture in this study, we find
similar behaviour of the diffusion of the momentum
modes around the conserved quantity.

A real-time transport (spin diffusion) process was
studied in Ref: arXiv: 1505.00135 by present authors.
Diffusion of ferromagnetic order into an anti-ferromagnet
when the systems are kept in contact under the
influence of this measurement process.

Cooling into dark states, instead of heating up.

Different initial states in different phases in a model with
richer phase structure.

Bring back the Hamiltonian.

Progess seems possible with fermions in the game as
well.

Thank you for your attention

Diffusion of M, from a
ferromagnetic initial state to
an anti-ferromagnetic one at

different times t = 0, { = 50/~
and t = 500/~.



Backup 1: Models and Algorithms

> The existing highly efficient loop-cluster algorithm for anti-ferromagnets can be
naturally extended to this particular case of real-time evolution.

»> Resulting clusters are closed loops extending in both Euclidean and real-time, which
are updated together.

8 0 forward real-time block

—— 2
1 z Ty
j e
T2

backward real-time block

~
S~
—

Euclidean-time block

Identical clusters in the forward and backward real-time evolution. Summed over “all
intermediate measurements”, and all spins are measured in the final state. Cluster
bonds are decided with the matrix elements in the matrix P = P; @ P] + Py @ P].
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