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The Schwinger-Keldysh (closed-time) contour

I Quantum many-body system governed by Ĥ(t)
I Initial state at t = 0 specified by density-matrix ρ̂(0).

I Evolution of the density matrix: d ρ̂(t)
dt = −i[Ĥ(t), ρ̂(t)]

I Formal solution: ρ̂(t) = Û(t , 0)ρ̂(0)[Û(t , 0)]†

Û(t , t ′) = T exp

[
−i
∫ t′

t
Ĥ(τ)dτ

]
= lim

ε→0
e−iεĤ(t′−ε) · · · e−iεĤ(t+ε)e−iεĤ(t)

I Calculations with normalized density matrix:

〈Ô(t)〉 = Tr
{
Ôρ̂(t)

}
= Tr

{
Û(0, t)ÔÛ(t , 0)ρ̂(0)

}

0

β

β t

I “forward-backward” evolution
along the real-time contour.

I Entanglement makes numerics
hard.



Measurements and Lindblads
I Idea 1: repeated measurements on the system to reduce entanglement.
I Measurements of an observable Ôk at time tk can be represented by projection

operator P̂Ok
.

I Projects on to the sub-space of the Hilbert space spanned by eigenvectors of Ôk with
eigenvalue Ok .

I P̂†Ok
= P̂Ok

; P̂2
Ok

= P̂Ok
;
∑

Ok
P̂Ok

= 1

I Idea 2: stochastic measurements represent the Markovian, non-unitary dynamics of a
quantum system interacting with an environment to a good approximation.

I The effect of the environment on the system is represented by the so-called Lindblad
operators, which are related to the projection operators.

I They represent the quantum jumps the system makes while interacting with the
environment, and given by L̂Ok

=
√
εγP̂Ok

.
I γ → strength of the coupling to environment and ε→ discrete time.
I Schrödinger eqn −→ Lindblad eqn:

dρ(t)
dt

= −i [H, ρ] +
1
ε

∑
ok

[
Lok ρ(t)L

†
ok
−

1
2

{
L†ok

Lok , ρ(t)
}]

= γ
∑
ok

[
Pok ρ(t)Pok − ρ(t)

]
(without H)



Why is the problem with measurements easier?

xi

ti tf

xf

ti tf

xi
xf

t1 t2 t3 t4

xi
xf

ti tf



Path-Integral with measurements

I Time-evolution tk → tk+1 described by Û(tk+1, tk ) = Û(tk , tk+1)
†.

I At time tk (k ∈ {1, 2, · · · ,N}) observable Ôk measured with eigenvalue Ok .

I Consider an initial state, specified by a normalized density matrix ρ =
∑

i pi |i〉〈i|; with
0 ≤ pi ≤ 1 and

∑
i pi = 1.

I Probability of making a single measurement of Ôk at time tk while evolving from ti to tf :

pρf (Ok )=
∑

i 〈i|Û(ti , tk )P̂Ok
Û(tk , tf )|f 〉 〈f |Û(tf , tk )P̂Ok

Û(tk , ti )|i〉 pi

I With many measurements,
pρf (O1,O2, · · · ,ON) =

∑
i 〈i|Û(ti , t1)P̂O1

Û(t1, t2)P̂O2
· · · P̂ON

Û(tN , tf )|f 〉
〈f |Û(tf , tN)P̂ON

· · · P̂O2
Û(t2, t1)P̂O1

Û(t1, ti )|i〉 pi

I For PI, insert complete set of states
∑

nk
|nk 〉〈nk | = I;

∑
n′k
|n′k 〉〈n

′
k | = I for the top and

bottom contours respectively.

I Unavoidable sign problem for 〈nk |Û(tk , tk+1)|nk+1〉 and/or 〈nk+1|Û(tk+1, tk )|nk 〉.



Zeroth attempt: remove the Hamiltonian
I Take an extreme case: switch off the Hamiltonian completely for the real-time evolution.

Û(tk+1, tk ) = I.
Can the real-time evolution still be interesting?

I Time-evolution needs to be driven entirely by non-commuting measurements. Need to
calculate the matrix elements of projection operators such as 〈nk |P̂Ok

|nk+1〉.
I Use the re-writing:

〈nk |P̂Ok
|nk+1〉〈n′k+1|P̂Ok

|n′k 〉 = 〈nk |P̂Ok
|nk+1〉〈n′k |P̂

†
Ok
|n′k+1〉

= 〈nk n′k |
(

P̂Ok
⊗ P̂T

OK

)
|nk n′k+1〉

I With only the measurements:

pρf (o1, o2, · · · , oN) =
∑

i 〈i|Po1 Po2 · · ·PoN |f 〉〈f |PoN · · ·Po2 Po1 |i〉 pi

=
∑

i pi 〈i i|(Po1 ⊗ PT
o1
)(Po2 ⊗ PT

o2
) · · · (PoN ⊗ PT

oN
)|f f 〉

I In the doubled Hilbert space of states |nk n′k 〉, for both pieces of the Keldysh contour
(using 〈n0n′0| = 〈i i| & |nN+1n′N+1〉 = |f f 〉):

pρf (o1, o2, · · · , oN) =
∑

i

pi
∑
n1n′1

· · ·
∑

nN n′N

N∏
k=0

〈nk n′k |Pok ⊗ PT
ok
|nk+1n′k+1〉



A concrete example
I For a model of dissipation, intermediate results are unimportant

sum over all possible measurement results −→ P̃k =
∑

ok
Pok ⊗ PT

ok
,

I The probability pρf to reach the final state |f 〉:

pρf =
∑
o1

∑
o2

· · ·
∑
oN

pρf (o1, o2, · · · , oN) =
∑

i

pi
∑
n1,n′1

· · ·
∑

nN ,n′N

N∏
k=0

〈nk n′k |P̃k |nk+1n′k+1〉

I Example: Two spins ~Sx and ~Sy forming total spin eigenstates:
|1, 1〉 =�, |1, 0〉 = 1√

2
(↑↓ + ↓↑), |1,−1〉 =�; |0, 0〉 = 1√

2
(↑↓ − ↓↑)

I Projection operator on spin-1: P1 = |1, 1〉〈1, 1|+ |1, 0〉〈1, 0|+ |1,−1〉〈1,−1|
I Projection operator on spin-0: P0 = |0, 0〉〈0, 0|

P1 =


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 1

 P0 =


0 0 0 0
0 1

2 − 1
2 0

0 − 1
2

1
2 0

0 0 0



I Negative entries in P0 give rise to a sign problem.
I Measurements can also induce sign problems!



The sign-problem and it’s solution
In the doubled Hilbert space, P1 ⊗ PT

1 , P0 ⊗ PT
0 are 16× 16 matrix with entries:
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Legend: black→ 1; blue→ 1
2 ; green→ 1

4 ; red→ − 1
4

Summing over all possible results eliminates the sign problem.

I Example of two-spin system easily extendable to large systems, where the environment
couples to the total spin (~Sx + ~Sy )2 of the spin-pairs ~Sx and ~Sy in a spin system.

I System of quantum spins 1
2 on a square lattice L× L with periodic boundary conditions.

I To define the initial density matrix ρ̂ = exp(−βĤ), use the Heisenberg
anti-ferromagnet: Ĥ = J

∑
<xy>

~Sx · ~Sy ; J > 0.



Extension to large systems

I Sporadic non-commuting measurements drive dynamics from initial state.
I Initial state −→ low-T (large β) of antiferromagnet, Néel state.
I Order parameters: uniform and staggered magnetizations

Mu =
1
2

∑
x

S3
x ; Mstag =

1
2

∑
x
(−1)x1+x2 S3

i
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Lindblad evolution: Structure factors

 100

 200

 300

 400

 500

 600

 0  1  2  3  4  5  6  7  8  9  10

γ t

c)

(π/8,π/8)

(π/4,π/4)

(5π/8,5π/8)

(3π/4,3π/4)

(π,π)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.2  0.4  0.6  0.8  1  1.2

|p a|

b)

L=16a
L=32a

I Evolution of the Fourier-modes can be parametrized by
〈|S̃(p)|2〉 → A(p) + B(p) exp(−t/τ(p))

I For small momenta, 1/[γτ(p)] = C|pa|r with r = 1.9(2)
I Clearly identifiable two different time scales.
I Final state at t →∞ is a paramagnet with short range correlations.
I More extensive investigations PRB 92 (2015), 3, 035116 by Hebenstreit et. al. suggest

that this exponent might be unique for all 2-spin observables, and evolution about a
conserved quantity for various quantum-spin Hamiltonians in (2+1)-d.

I Dynamic universality classes.



Phase Transitions in real-time?
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I Staggered susceptibility 〈M2
s 〉/L2 ∝ L2 for small-t.

I For large-t, this becomes independent of volume.
I Breaking of SU(2) symmetry restored at late (real) times.
I Does a phase transition to the symmetry-restored phase take place at finite time tc?
I Left plot: χs/L2 = 〈M2

s 〉/L4.
I Right plot: Binder cumulant 〈M4

s 〉/〈M2
s 〉2.

I Curves do not cross, indicating the transtion is complete only for infinite real-times.



Chi PT for low energy anti-ferromagnets

I SU(2) Heisenberg antiferromagnets in (2+1)-d share many features with QCD.
I For both the systems, the low-energy effective theory can be captured by an effective

field theory, which describes the magnon-magnon interaction in anti-ferromagnets,
similar to the pion interactions in QCD.

S[~e] =
∫

d2xdt
ρs

2

(
∂i~e.∂i~e +

1
c2
∂t~e.∂t~e

)
where is a Goldstone boson (magnon) field in
SU(2)/U(1) = S2; ~e(x) = (e1(x), e2(x), e3(x)), ~e(x)2 = 1

I The low-energy constants of the theorys are the staggered magnetizationMs , the spin
stiffness ρs , the speed of sound c.

I check the applicability of Eulidean time methods in real-time.
I For example, take the expression for χs

χs =
M2

sL2β

3

{
1 + 2

c
ρsLl

β1(l) +
(

c
ρsLl

)2
[β1(l)2 + 3β2(l)] +O(

1
L3

)

}

I Make the LEC’s time dependent and see real-time behaviour.



Chiral PT to study the real-time evolution

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

γ t

c)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

γ t

d)

I Exponential decay of the staggered magnetization: Ms(t) =Ms(0) exp(−t/τ)
I The lengthscale ξ = c/(2πρs) diverges as the spin stiffness ρs vanishes.
I Destruction of order takes place very rapidly t = 1/γ in contrast to the diffusion

process, which is a power law.



In progress: 1,2,3, · · · ,∞
I Ref. PRB 92 (2015), 3, 035116 by Hebenstreit et. al.

studied all possible measurement processes using
two-spin observables for a variety of models (ferro,
anti-ferro Heisenberg model, XY) in (2 + 1)-d. Besides
confirming the general picture in this study, we find
similar behaviour of the diffusion of the momentum
modes around the conserved quantity.

I A real-time transport (spin diffusion) process was
studied in Ref: arXiv: 1505.00135 by present authors.
Diffusion of ferromagnetic order into an anti-ferromagnet
when the systems are kept in contact under the
influence of this measurement process.

I Cooling into dark states, instead of heating up.

I Different initial states in different phases in a model with
richer phase structure.

I Bring back the Hamiltonian.

I Progess seems possible with fermions in the game as
well.

Thank you for your attention

Diffusion of Mu from a

ferromagnetic initial state to

an anti-ferromagnetic one at

different times t = 0, t = 50/γ

and t = 500/γ.



Backup 1: Models and Algorithms
I The existing highly efficient loop-cluster algorithm for anti-ferromagnets can be

naturally extended to this particular case of real-time evolution.
I Resulting clusters are closed loops extending in both Euclidean and real-time, which

are updated together.

β 0

x1

Euclidean-time block

x1

x2

x2

ti tf

forward real-time block

backward real-time block

x1

x1

Identical clusters in the forward and backward real-time evolution. Summed over “all

intermediate measurements”, and all spins are measured in the final state. Cluster

bonds are decided with the matrix elements in the matrix P̃ = P1 ⊗ PT
1 + P0 ⊗ PT

0 .
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