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Motivation
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• To compute electric polarizabilities we need to 
compute hadron energies in the presence of a 
constant electric field.#

• Euclidean formulation requires that the Hamiltonian 
of the system is bounded from below, i.e. there is a 
vacuum state of lowest energy.#

• In the presence of a real electric field, the vacuum is 
no longer stable -- Schwinger instability against pair 
creation.#

• In a finite volume box we can make the system stable 
by limiting the maximal distance between charges.#

• We use Dirichlet boundary conditions in space to 
stabilize the system.#

• Note that this instability exists even in a finite 
volume box if we use periodic boundary conditions.
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Dirichlet boundary conditions
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• Dirichlet boundary conditions are equivalent to 
a hard wall in the direction of the electric field.#

• The lowest energy for one-particle states 
corresponds to a non-zero momentum.#

• The chiral condensate also vanishes on the 
boundary, but it is expected to get restored to 
its bulk value away from the wall.#

• A sigma-model calculation estimated the 
thickness of the region where the condensate is 
perturbed to be sizable.#

• Assuming that a sigma particle of mass 440 
MeV saturates the scalar channel, the 
condensate get restored to 90% of its bulk 
value about 1.3 fm away from the wall.
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FIG. 1. The solution ξ as a function of the finite extent L
of the x-direction. Values of L for which ξ ≥ 1 lead to the
vacuum expectation value Σ0(x) = 0, and hence correspond
to a complete restoration of chiral symmetry in the sigma
model.

The concavity of the function Σ0(x) follows from the
analogue of Newton’s second law. The force is given by
F = −dV/dΣ0, with V = −Λ(Σ2

0 − v2)2, and implies

that the values of the field at the turning points, Σ(j)
0 ,

are local minima for j even, and local maxima for j odd.

As a result, we need not consider the turning points Σ(3)
0

and Σ(4)
0 in determining the solution Σ0(x). For exam-

ple, consider a solution which rises from Σ0 = 0 at x = 0.
For this solution to turn over, we need a positive turn-
ing point corresponding to a maximum. The only pos-

sibility is the value Σ(1)
0 . The solution Σ0(x) could then

decrease from the maximum down to a minimum before
rising again, but the only possible turning point that cor-

responds to a minimum with value less than Σ(1)
0 is Σ(2)

0 .

The solution Σ0(x) is necessarily bounded by Σ(1)
0 from

above and Σ(2)
0 from below. There are an infinite num-

ber of solutions which minimize the action. They are
characterized by the number of oscillations between the

extrema Σ(1)
0 and Σ(2)

0 . Because the latter is negative, the
inclusion of a small quark mass term will lead to an en-
ergetic disadvantage for all solutions having any turning

points for which Σ0(x) attains the value Σ(2)
0 .

The solution Σ0(x) we seek can thus be characterized
as monotonically increasing from zero up to the maxi-

mum value Σ(1)
0 , and then monotonically decreasing back

down to zero. The motion of Σ0 is symmetric about the
turning point; consequently, we must have x1 = L/2. In-
tegrating the equation of motion from the boundary to
the turning point (or vice versa), we arrive at the equa-
tion

K

(

1− ξ

1 + ξ

)

=
ℓ

2

√

1 + ξ, (11)

where K(m) is the complete elliptic integral of the first
kind. This is a special case of the incomplete elliptic

integral of the first kind, F(φ |m), defined by

F(φ |m) =

∫ φ

0

dθ
√

1−m sin2 θ
, (12)

namely K(m) = F(π2 |m). Above, we have employed the
abbreviation

ℓ = vL
√
2Λ =

1

2
mσL. (13)

The relation expressed in Eq. (11) implicitly defines the
analogue of the mechanical energy E as a function of
the sigma model parameters and the extent of the x-
direction, i.e. E = E(v,Λ, L). In practice, it is simpler to
work with the dimensionless variable ξ = ξ(v,Λ, L). In
Fig. 1, we plot the value of ξ that satisfies Eq. (11) as a
function of the extent of the compact direction, L. For

L <
π

2v
√
Λ

=

√
2π

mσ
≈ 2.0 fm, (14)

the solution requires ξ ≥ 1 for which the turning point

Σ(1)
0 does not exist, and consequently chiral symmetry is

completely restored in the model.
With the value of ξ determined from Eq. (11), we can

implicitly specify the solution Σ0(x) by integrating the
equation of motion to an arbitrary point x. We find the
solution must satisfy

F

(

sin−1 Σ0

Σ(1)
0

∣

∣

∣

∣

∣

1− ξ

1 + ξ

)

= ℓ
√

1 + ξ

×

{

x
L
, for 0 ≤ x ≤ L

2

1− x
L , for L

2 ≤ x ≤ L
, (15)

with F(φ |m) the incomplete elliptic integral defined
above. Notice the full solution agrees with Eq. (11) at
the turning point.
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FIG. 2. Ratio of the chiral condensate with homogeneous
Dirichlet boundary conditions to the infinite volume chiral
condensate plotted as a function of the x-coordinate scaled
by L. For L < 2.0 fm, the condensate vanishes everywhere,
< ψψ(x) >= 0.
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Chiral condensate

• Chiral condensate #

• For periodic boundary conditions we have translational invariance#

!

• For Dirichlet boundary conditions we have translational invariance only in 
the directions parallel to the boundary#

!

• The chiral condensate is defined in the massless limit#
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Ensemble details
• nHYP Nf=2 dynamical configurations with a=0.121 fm#

• nHYP valence 243 × 48 (m𝜋=317MeV) 243 × 64(m𝜋=227 MeV)#

• overlap valence 163 × 32 for both m𝜋=317MeV and m𝜋=227MeV#

• For all ensembles we use 100 configurations#

• Dirichlet boundary conditions are used in the longest (time) 
direction and periodic boundary conditions in the other 
directions#

• For each ensemble we run also perform a calculation using 
periodic boundary conditions in time to serve as reference.
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Chiral condensate (nHYP)

7

0 10 20 30 40
0.00

0.02

0.04

0.06

0.08

0.10

xêa

»D»

Sê10
D0ê10

mp=317 MeV
am1=0.667H36L
am2=1.47H9L
c2êdof=0.93
tŒ@3,24D

0 10 20 30 40

-15

-10

-5

xêa
lo
g
»D» Sê10

D0ê10

Engel et al, PRL 114 (2015), no. 11 112001 a3⌃ = �a3 hq̄qi = 4.22⇥ 10�3

a3⌃ = �a3 hq̄qi = 4.41⇥ 10�3GMOR (unrenormalized)

�(x) = a

3 hq̄q(x)i
dirichlet

�a

3 hq̄q(x)i
periodic

=
⌦
TrM�1(x)

↵
periodic

�
⌦
TrM�1(x)

↵
dirichlet



Chiral condensate (nHYP)
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Border thickness
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Overlap fermions
• This discretization satisfies a lattice version of the chiral symmetry#

• The massive operator has the same eigenvectors as the massless operators#

!

• The chiral condensate is defined in terms of the “continuum” propagator#

!

• This operator doesn’t have the cubic divergence and the condensate can be 
extracted from a mass extrapolation#

!

• The quadratic term in mass is usually small and can be neglected in extrapolation
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Overlap fermions#
eigenmode expansion
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Chiral condensate#
periodic boundary conditions
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Chiral condensate#
Dirichlet boundary conditions
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Chiral condensate#
Dirichlet boundary conditions
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Chiral condensate#
Dirichlet boundary conditions
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Border thickness
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Conclusions
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• We calculated the effect of the Dirichlet boundary conditions on the chiral 
condensate on ensembles directly relevant for our polarizability studies.#

• For m𝜋=227 MeV and m𝜋=317 MeV the effect of the boundary on Tr M-1 is negligible a 
couple of lattice spacings away from the boundary (approx 1/4 fm).#

• To compute the effect on the chiral condensate we used valence overlap fermions.#

• The condensate is restored to 90% of its bulk value at 0.5 fm away from the boundary.#

• The disagreement with the sigma-model prediction comes from the fact that the 
correlation in the scalar channel is not saturated by the sigma excitation, as assumed 
in the model.#

• Other scalar excitations are dynamically relevant and their relative coupling are also 
important. The behavior of the condensate close to the wall is most likely not 
universal.


