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Motivation

To compute electric polarizabilities we need to
compute hadron energies in the presence of a
constant electric field.

Euclidean formulation requires that the Hamiltonian
of the system is bounded from below; i.e. there is a
vacuum state of lowest energy.

In the presence of a real electric field, the vacuum is
no longer stable - Schwinger instability against pair
creation.

In a finite volume box we can make the system stable
by limiting the maximal distance between charges.

We use Dirichlet boundary conditions in space to
stabilize the system.

Note that this instability exists even in a finite
volume box if we use periodic boundary conditions.
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Dirichlet boundary conditions

Dirichlet boundary conditions are equivalent to
a hard wall in the direction of the electric field.

The lowest energy for one-particle states
corresponds to a non-zero momentum.

The chiral condensate also vanishes on the
boundary, but it is expected to get restored to
its bulk value away from the wall. ) ——

A sigma-model calculation estimated the
thickness of the region where the condensate is
perturbed to be sizable.
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Assuming that a sigma particle of mass 440
MeV saturates the scalar channel, the
condensate get restored to 90% of its bulk

value about 1.3 fm away from the wall. x/L
 — ———
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Chiral condensate

Chiral condensate (qq(x)) = —Tr M 5
For periodic boundary conditions we have translational invariance
1 il 1 i
(qq(x)) = — <Trs,c anlj =7 <TrM 1>

For Dirichlet boundary conditions we have translational invariance only in
the directions parallel to the boundary
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The chiral condensate is defined in the massless limit

(qg) (m) = (qq) + co(x)a™ + cr(@)ma™ + c2(x)m’a™" + c3(x)m’



Ensemble details

nHYP N¢=2 dynamical configurations with a=o.121 fm

nHYP valence 243 x 48 (m;=317MeV) 243 x 64(m;=227 MeV)
overlap valence 163 x 32 for both m;=317MeV and m,;=227MeV
For all ensembles we use 100 configurations

Dirichlet boundary conditions are used in the longest (time)
direction and periodic boundary conditions in the other
directions

For each ensemble we run also perform a calculation using
periodic boundary conditions in time to serve as reference.



Chiral condensate (nHYP)
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Chiral condensate (nHYP)
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r(0.9 2)=7.00(12)




Overlap termions

o This discretization satisfies a lattice version of the chiral symmetry

e The massive operator has the same eigenvectors as the massless operators

D(m):p—l—%-l— (p—%)’yg)e(l—[):m—k <1—2—ﬂ;) D(0)

e The chiral condensate is defined in terms of the “continuum’” propagator
propag

1 LR 1 1

(qq) = _VZ_pTr T yee(H) =2 —VTr D.(m)™* D.(m)™! = (1 i 2_p> D(m)™*

o This operator doesn’t have the cubic divergence and the condensate can be
extracted from a mass extrapolation

2 3

(qq) (m) = (q@q) + cyma™? + com?a™! + czm

o The quadratic term in mass is usually small and can be neglected in extrapolation

H. Neuberger, Phys.Rev. D57 (1998) 5417
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Conclusions

We calculated the effect of the Dirichlet boundary conditions on the chiral
condensate on ensembles directly relevant for our polarizability studies.

For m;=227 MeV and m,=317 MeV the eftfect of the boundary on Ir M is negligible a
couple of lattice spacings away from the boundary (approx 1/4 fm).

To compute the effect on the chiral condensate we used valence overlap fermions.
The condensate is restored to 90% of its bulk value at 0.5 fm away from the boundary:

The disagreement with the sigma-model prediction comes from the fact that the
correlation in the scalar channel is not saturated by the sigma excitation, as assumed
in the model.

Other scalar excitations are dynamically relevant and their relative coupling are also
important. The behavior of the condensate close to the wall is most likely not
universal.
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