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Motivation: the cost of domain wall fermions

Domain-wall fermions: good chiral symmetry, but more expensive Dirac
operator.

Cost proportional to Ls , size of fifth dimension.

Larger Ls gives smaller chiral symmetry breaking but costlier simulations.

Goal: Simulate at large Ls without paying the full cost.

Technique #1: HDCG for deflation in evolution.

Technique #2: We implement an idea suggested by Brower, Neff, and Orginos
in arXiv:1206.5214.
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HDCG for deflation in evolution

HDCG (“hierarchically deflated conjugate gradient”) is a multigrid-like deflation
technique for domain-wall fermions. (Boyle, arXiv:1402.2585)

Idea: Calculate a deflation subspace at the beginning of an HMC trajectory and
use it to deflate all solves during the trajectory.
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Result: No speedup because

Quality of deflation subspace deteriorates too rapidly as gauge field evolves.

Matrix elements of the low modes must be reevaluated before each solve.

Future work may overcome these difficulties.
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Review of domain wall–overlap correspondence

(see e.g. Brower et al.)

DDW(m, Ls) – domain wall Dirac operator with input mass m, acts on 5D
vectors.

Möbius generalization adds more parameters beyond m and Ls .

For each DDW(m, Ls) there is a 4D “effective overlap operator” Dov(m, Ls)
such that

det

[
DDW(m, Ls)

DDW(1, Ls)

]
5D

= det[Dov(m, Ls)]4D (1)

The explicit form of Dov is:

Dov(m, Ls) = [P−1DDW(1, Ls)−1DDW(m, Ls)P]s=0,s′=0 (2)

(P is a simple operator that shifts the chiralities onto the right domain walls).

In the Ls →∞ limit, Dov becomes the true overlap operator.
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Ls-splitting of the determinant

Let’s manipulate the fermion determinant for a single domain-wall quark.
Pick a new L′s smaller than the original Ls .

det

[
DDW(m, Ls)

DDW(1, Ls)

]
5D

= det[Dov(m, Ls)]4D

= det[Dov(m, L′s)]4D × det

[
Dov(m, Ls)

Dov(m, L′s)

]
4D

= det

[
DDW(m, L′s)

DDW(1, L′s)

]
5D

× det

[
Dov(m, Ls)

Dov(m, L′s)

]
4D

(3)

First term: the regular 5D DWF determinant at a smaller (cheaper) L′s .
Second term: a 4D determinant which corrects for L′s 6= Ls .

Correction term is cheap if Dov(m, L′s) ≈ Dov(m, Ls). Then ratio is ≈ 1 and forces
are small, so time step for correction term can be large.

Note that we have NOT changed the overall fermion action, just the strategy for
simulating it.
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Good reduced-Ls approximations

The speedup relies on finding a DDW(m, L′s) such that

Dov(m, L′s) ≈ Dov(m, Ls) (4)

We have explicitly:

Dov(m) =
1

2
[1 + m + (1−m)γ5ε(H)] (5)

H =
γ5Dw (−M5)

2 + Dw (−M5)
(the “Shamir kernel”) (6)

For Dov the true overlap operator, ε(x) is the sign function.
For Dov an effective overlap operator, ε(x) is an approximation to the sign
function.

Dov(m, L′s) ≈ Dov(m, Ls) if ε(L
′
s )(x) ≈ ε(Ls )(x).
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zMöbius

DWF sign function: ε(x) =
(1 + x)Ls − (1− x)Ls

(1 + x)Ls + (1− x)Ls
(7)

Möbius fermions generalize DWF to use the sign function approximation

Möbius sign function: ε(x) =
f (x)− f (−x)

f (x) + f (−x)
; f (x) =

Ls∏
i=1

(ωi + x) (8)

where ωi are arbitrary complex numbers.

zMöbius: Given original ε(Ls )(x), pick L′s < Ls and find ωi to minimize
|ε(L′

s )(x)− ε(Ls )(x)|.

This gives a reduced-Ls approximation Dov(m, L′s) to the original Dov(m, Ls).
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Approximation shaping

The Remez algorithm can
find good ωi .

The accuracy of the
approximation can be
concentrated in the region of
highest eigenvalue density for
the kernel operator H.

|ε(L′
s=12)(x)− ε(Ls=24)(x)|
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Simulation strategy

The only new element of the simulation is the correction determinant, which can
be represented by 4D pseudofermions (now we give the 2-flavor version):

det

[
Dov(m, Ls)†Dov(m, Ls)

Dov(m, L′s)†Dov(m, L′s)

]
4D

∝
∫

Dφ†Dφ exp

(
−φ†

[
Dov(m, Ls)†Dov(m, Ls)

Dov(m, L′s)†Dov(m, L′s)

]−1

φ

) (9)

The zMöbius approximation is extremely accurate for large enough L′s .

As a result the correction force is so small that we can completely omit it
from the evolution.

We only include these 4D pseudofermions in the HMC accept/reject step.
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Results

Test ensemble: 2+1+1f, a−1 = 3 GeV, 323 × 64, Ls = 24, L′s = 12, near
physical point

Reduced-Ls simulation strategy gives 30% reduction in cost of light quark
determinant.

Speedup comes from 50% reduction in Ls . Cost reduction is less than 50%
because CG iteration count increases somewhat.

New preconditioning scheme needed to avoid even larger increase in iteration
count (see Chulwoo’s talk).

Production:
This strategy now in use for 80× 80× 96× 192, a−1 = 3 GeV, physical point
2+1+1f simulations by RBC/UKQCD collaboration, using Ls = 32, L′s = 14. Here
∆Hcorrection . 5× 10−4 � 1.

(Ls is large here because we have included a “dislocation-enhancing determinant”
to promote topology change. Dislocations increase the residual chiral symmetry
breaking of DWF and we use large Ls to compensate.)
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Summary

We have implemented a version of Brower et al.’s idea for speeding up DWF
simulations.

We achieve a ∼ 30% speedup of the light quark determinant.

The zMöbius ideas discussed in the next talk are crucial to achieving a
speedup.

We are applying these ideas in a new large-volume physical-point 2+1+1f
simulation.
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