Probing near conformal dynamics with 4+8 and 8 flavors: running coupling and the spectrum

Evan Weinberg

Boston University, Boston, MA

weinbe2@bu.edu

July 14, 2015

• With a common action...

- SU(3) gauge group
- Gauge action: fundamental-adjoint with $\beta_{\rm a}=-\beta/4$ [Cheng et al. 2013][Cheng et al. 2014]
- Fermion action: nHYP smeared staggered [Hasenfratz et al. 2007]
- Software: HMC and most measurements in FUEL [J. Osborn]

…common goals…

- Explore near conformal or conformal dynamics
- Study the iso-singlet 0^{++}
- …and common collaborators!
 - 8 flavor: LSD Collaboration + Anna Hasenfratz [SCGT proceedings 2015]
 - 4+8 flavor: Richard Brower, Claudio Rebbi, Anna Hasenfratz, ESW, Oliver Witzel [JETP 120 (2015) 3, 423] [PoS Lattice2014 254] [CCP proceedings 2014]

LSD Collaboration

in collaboration with Anna Hasenfratz

SU(3) 4+8 and 8 flavor

Motivation

Why are more flavors exciting?

• The excitement is all hinted in the gauge-fermion beta function!

$$\beta(g) = -\beta_0 g^3 - \beta_1 g^5 + \mathcal{O}(g^7)$$

$$\beta_0 = \left[\frac{11}{3}N_c - \frac{2}{3}N_f\right]/(4\pi)^2$$
$$\beta_1 = \left[\frac{34}{3}N_c^2 - \left(\frac{13}{3}N_c - \frac{1}{N_c}\right)N_f\right]/(4\pi)^4$$
$$\beta_1 = 0 \rightarrow N_f \approx 8.05$$

$$B(g) \begin{cases} 16 flavor\\ Conformal,\\ weak Coupling\\ g_i^{r} \approx 1 \end{cases}$$

• 2 flavor is clearly confining (nature), and 16 flavor is perturbative. What happens in between?

Evan Weinberg (Boston University)

8 flavors

- Promising candidate for near conformal dynamics
 - SU(3), fundamental rep.
 - Integer number of fermions
- Interesting and significant observations from LatKMI [Y. Aoki et al. 2014]
- Large scale resources required to explore chiral limit

4+8 flavors

- *Specific* case of *general* model for near conformal dynamics
- 4 flavors chiral mass m_l
 +8 flavors of *tunable* mass m_h
- $m_h \rightarrow \infty$: 4 flavor: QCD-like
- $m_h
 ightarrow m_\ell$: 12 flavor: likely conformal

[Cheng et al. 2013][Itou 2013]

[Cheng et al. 2014][Lombardo et al. 2014]

4+8 model: RG sketch

With a finite m_h , we can see walking behavior.

SU(3) 4+8 and 8 flavor

4+8 model: continuum limit

- We have 3 parameters: β , m_{ℓ} , m_h
- Chiral limit first: $m_\ell \rightarrow 0.2$ parameters
- Continuum limit next: simultaneous $\beta \rightarrow \infty$ and $m_h \rightarrow 0$

• This is difficult but it can be done!

Simulations + Running Coupling

Performed simulations

- 8 flavor simulations at β = 4.8 focus on chiral masses and are very expensive
- 4+8 simulations at $\beta = 4.0$ are largely on $24^3 \times 48$ volumes
- Symbols indicate volumes, colors finite volume effects.

Gradient flow running coupling: 4+8

- Gradient flow coupling with τ -shift extrapolated to $m_{\ell} = 0$.
- $N_f = 4$ shows QCD-like running.
- Finite m_h : "shoulder" increases for smaller m_h .

Spectrum

Connected spectrum

- Rescaled m_{ℓ}, m_q, M_{π} , and M_{ρ} by $\sqrt{8t_0}$: relative scales are significant
- 4+8 flavors: weak dependence on m_h
- Fit lines are meant to "guide the eye" based on ChPT.

Are we chirally broken?

- LatKMI data [Y. Aoki et al. 2014], USBSM data [Schaich, PoS Lattice2013 072]
- 4 flavors (QCD-like) has a divergent ratio.
- 12 flavors has a constant ratio [Cheng et al. 2014]: expected for a conformal system

Evan Weinberg (Boston University)

Are we chirally broken?

- LatKMI data [Y. Aoki et al. 2014], USBSM data [Schaich, PoS Lattice2013 072]
- 4 flavors (QCD-like) has a divergent ratio.
- 12 flavors has a constant ratio [Cheng et al. 2014]: expected for a conformal system

Evan Weinberg (Boston University)

Strategy for disconnected diagrams

- 4+8 and 8 flavor projects have the same setup...
 - 6 U(1) sources with dilution in time, color, and even/odd spatially
 - Improved estimator for $\langle \bar{\psi}\psi \rangle$
 - Dilution in time, color, even/odd space
 - Improved estimator for disconnected piece
 - Still need large statistics to suppress gauge noise
- ...and the same analysis strategy.
 - Correlated fit to both parity states
 - Vacuum subtraction introduces large uncertainties
 - Fit an additional constant
 - Equivalent to fitting the finite difference C(t+1) C(t)

$$C(t) = c_{0^{++}} \cosh\left(M_{0^{++}}\left(T/2-t\right)\right) + c_{\tilde{\pi}_{sc}}\left(-1\right)^t \cosh\left(M_{\tilde{\pi}_{sc}}\left(T/2-t\right)\right) + v$$

4+8 flavors: F_{π} , M_{π} , M_{ρ} , and $M_{0^{++}}$ for $m_h = 0.060, 0.080$

SU(3) 4+8 and 8 flavor

8 flavors: F_{π} , M_{π} , M_{ρ} , $M_{nucleon}$, and $M_{0^{++}}$

• $m_{\ell} = 0$: $\sqrt{8t_0}M_{\rho} = 0.87$, $\sqrt{8t_0}M_{nucleon} = 1.25$, $\sqrt{8t_0}M_{0^{++}} = 0.25$, $\sqrt{8t_0}F_{\pi} = 0.09$

- $m_{\ell} = 0.00125 : F_{\pi}L = 0.0213 \cdot 64 = 1.4$
- Connected spectrum not happy with "naive" fit form

Remarks

Concluding remarks

4 + 8 flavors

- A great model to explore near conformal dynamics by varying m_h continuously.
- Limiting cases of 4 and 12 flavors help us understand what is happening.

8 flavors

- A difficult system requiring very expensive, chiral simultations to study
- May be very close to the onset of the conformal window: further studies are needed

Non-QCD like features

- "Shoulder" in the running coupling
- Tunable chiral behavior with m_h
- Chiral behavior visible only for small bare fermion masses

The 0⁺⁺ is light: $M_{0^{++}} < M_{\rho}, 2M_{\pi}$ Does a dynamical mechanism give this?

Evan Weinberg (Boston University)

SU(3) 4+8 and 8 flavor

Thank you!

Backup

Backup: 8 flavors finite temperature studies

• We base our 8 flavor runs on existing results.

Figure: Finite T studies by Boulder / LSD, in preparation

• Run at strong couplings safe from deconfinement and lattice phases.

Backup: Gradient flow running coupling

• Wilson flow scale $\sqrt{8t_0}$ [Narayanan and Neuberger 2006] [Lüscher 2010]

- 4, 4+8, 12 flavor at $\beta = 4.0$
- 8 flavor at $\beta = 4.8$