

14th of June 2015 — Lattice 2015, Kobe, Japan

Finite volume hadronic vacuum polarisation at arbitrary momenta

Southampton

Antonin J. Portelli

in collaboration with **Luigi Del Debbio (U. of Edinburgh)**

Motivations

HVP and momentum quantisation

$$= 4\alpha^2 \int_0^{+\infty} dq^2 f(q^2) [\Pi(q^2) - \Pi(0)]$$

- * Finite volume: momentum quantisation.
- * Dominated by momenta around $q^2 \sim m_{\mu}^2 \sim (100 \text{ MeV})^2$.
- * Typical finite-volume quantum: $(2\pi/10 \text{ fm})^2 \sim (125 \text{ MeV})^2$.
- * Problem generally circumvented by modelling the HVP form factor in the low- q^2 region.

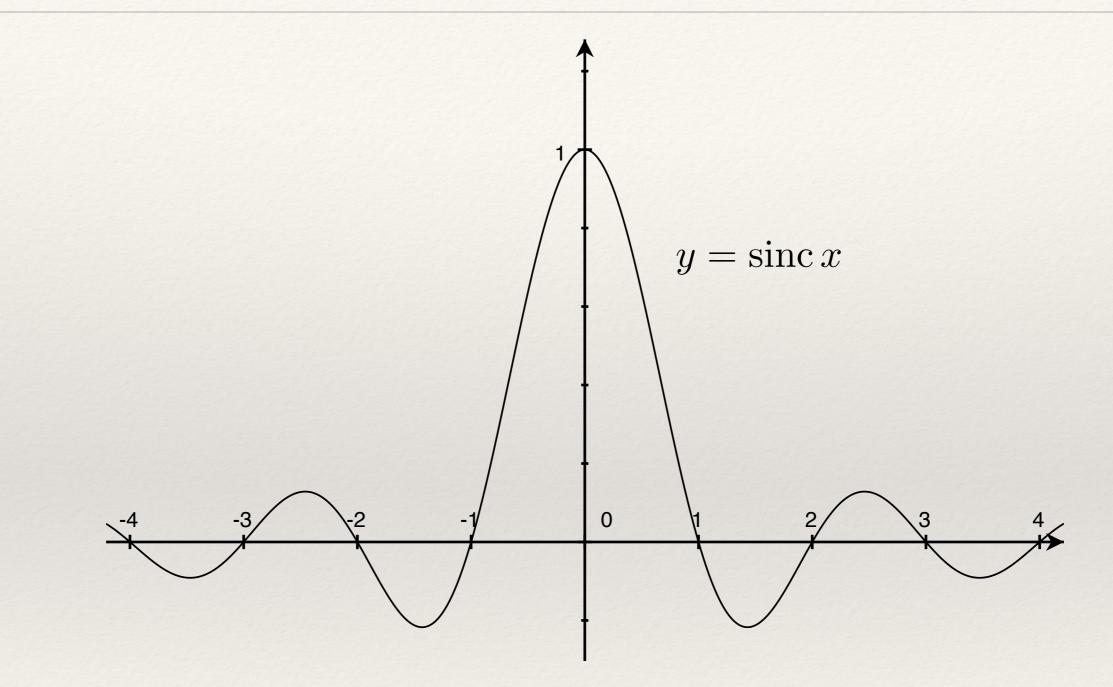
HVP and momentum quantisation

- * In practice: one computes $\langle J_{\mu}(x) J_{\nu}(0) \rangle$ on the lattice and Fourier-transform the result.
- * Numerically speaking, we could use continuous momenta in the Fourier transform.
- * How wrong would that be?
- Procedure already used in: [Feng *et al.*, PRD 88(3), 034505, 2013] & [C. Lehner and T. Izubuchi, Lattice 2014] but assume an infinite time extent or infinite-volume data.

Sine cardinal interpolation (SCI)

SCI definition

SCI definition



sinc: "finite volume delta function"

SCI definition

* Physics:

$$\tilde{\Pi}_{\mu\nu}(q) = \sum_{\overline{k}} \Pi^{\text{FV}}_{\mu\nu}(\overline{k}) \operatorname{sinc} \left[\frac{L}{2\pi} (q - \overline{k}) \right]$$
How fast $\tilde{\Pi}_{\mu\nu}(q)$ converges to the infinite volume correlation function for $L \to +\infty$?

* <u>Maths:</u>

$$\tilde{f}(q,h) = \sum_{n \in \mathbb{Z}^D} f(hn) \operatorname{sinc}\left(\frac{q-hn}{h}\right)$$

What is the extrapolation error for *h* small? Answer: **Sampling theory**

Shannon sampling theorem

Shannon, 1946:

If the Fourier transform of f has its support included in $(-\pi/h, \pi/h)^D$ then $\tilde{f}(q, h) = f(q)$.

Heuristic: a function with compact support can be exactly described by a discrete amount of information. We know that already: **Fourier series**.

Home-brewed extension

On some blackboard in Edinburgh, 2015:

If the Fourier transform of f decays faster than any power of $|x|^{-1}$, $\tilde{f}(q,h) - f(q)$ decays faster than any power of h.

Heuristic: Poisson summation formula.

Any function infinitely differentiable with integrable derivatives (Sobolev functions) verifies the hypothesis.

MSW theorem

Mc Namee, Steinger and Whitney, 1971 (1D):

If f can be analytically continued to the band $|\Im(q)| < E$, then $\tilde{f}(q,h) - f(q) = O(e^{-\frac{\pi E}{h}})$.

Heuristic: reconstruct the cardinal series through residue theorem applied to a nicely chosen function.

The hypothesis implies that the Fourier transform of f decays exponentially (Paley-Wiener theorems).

Application to the HVP

HVP tensor in finite volume

In a hypercubic volume, Hodge decomposition plus a pinch of group theory:
 (*cf.* also [D. Bernecker & H. B. Meyer, EPJ A 47(11), pp. 148–16, 2011])

$$C_{\mu\nu}(x) = (\partial_{\mu}\partial_{\nu} - \delta_{\mu\nu}\Delta)F(x) + \delta_{\mu\nu}z$$

z : dimension 6 constant (background density)

* Fourier transform using an arbitrary momentum: $\tilde{\Pi}_{\mu\nu}(q) = (q_{\mu}q_{\nu} - \delta_{\mu\nu}q^2)\tilde{\Pi}(q^2) + \delta_{\mu\nu}L^4z \operatorname{sinc}\left(\frac{qL}{2\pi}\right)$ This defines the SCI $\tilde{\Pi}$ of the HVP form factor.

SCI and zero-mode subtraction

- * For simplicity: $q = (q_0, 0, 0, 0)$ and $\mu = \nu = j$ spatial.
- * Traditional computation of $\tilde{\Pi}(q^2)$:

$$\frac{\tilde{\Pi}_{jj}(q_t)}{q_t^2} = \tilde{\Pi}(q_t^2) + \frac{L^4 z}{q_t^2} \operatorname{sinc}\left(\frac{q_t L}{2\pi}\right)$$

The zero-mode term diverges for $q_t \rightarrow 0$!

* Subtracted zero-mode $\overline{\Pi}_{\mu\nu}(q) = \widetilde{\Pi}_{\mu\nu}(q) - \widetilde{\Pi}_{\mu\nu}(0)$:

$$\frac{\overline{\Pi}_{jj}(q_t)}{q_t^2} = \widetilde{\Pi}(q_t^2) + \frac{L^4 z}{q_t^2} \left[\operatorname{sinc}\left(\frac{q_t L}{2\pi}\right) - 1 \right]$$

The zero-mode term converges to $-L^6 z/24$.

SCI error

- * Let's assume that HVP finite-volume effects are decaying exponentially with $M_{\pi}L$.
- * Spectral representation: $\Pi_{\mu\nu}(q)$ has an analytical continuation in the band $|\Im(q_0)| < 2M_{\pi}$.
- * MWS theorem: $\tilde{\Pi}(q^2)$ is the infinite-volume form factor up to $O(e^{-M_{\pi}L})$ effects.
- * "We didn't make things worse"

SCI and moments

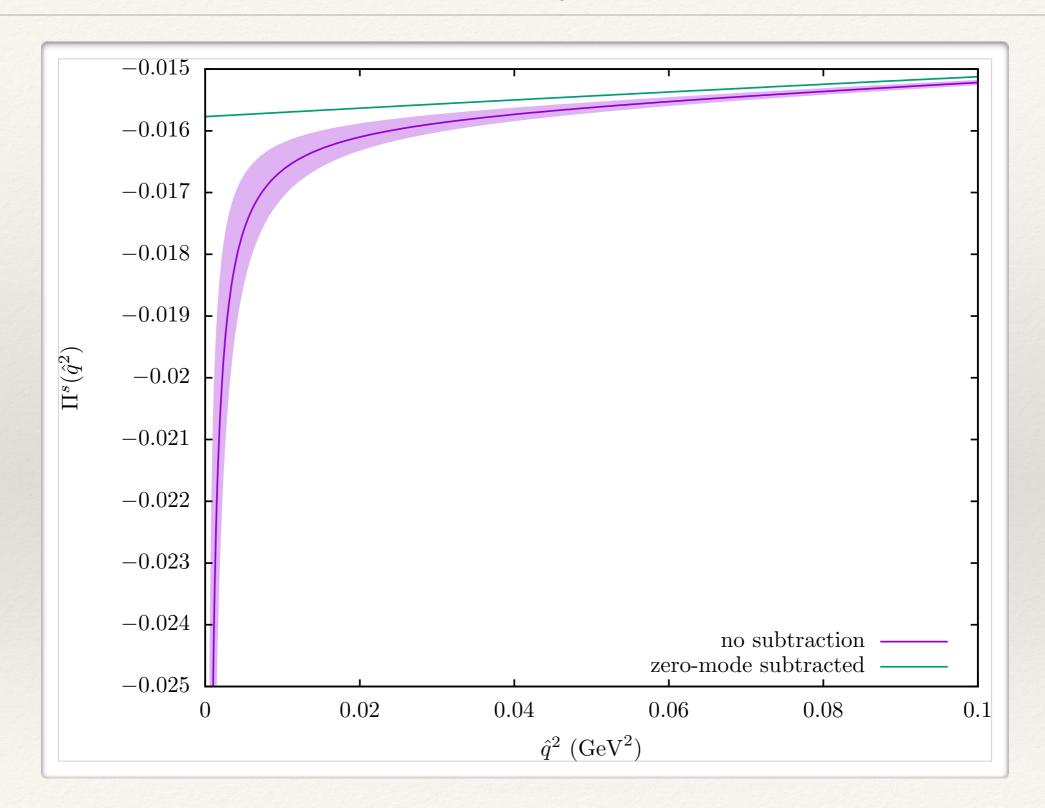
One can compute consistently continuous moments in finite-volume:

$$-\frac{1}{2} \int_{-L/2}^{L/2} \mathrm{d}^4 x \, x_0^2 C_{jj}(x) = \tilde{\Pi}(0) - \frac{\pi^2 L^6 z}{24}$$
$$\frac{1}{24} \int_{-L/2}^{L/2} \mathrm{d}^4 x \, x_0^4 C_{jj}(x) = \tilde{\Pi}'(0) + \frac{\pi^4 L^8 z}{1920}$$

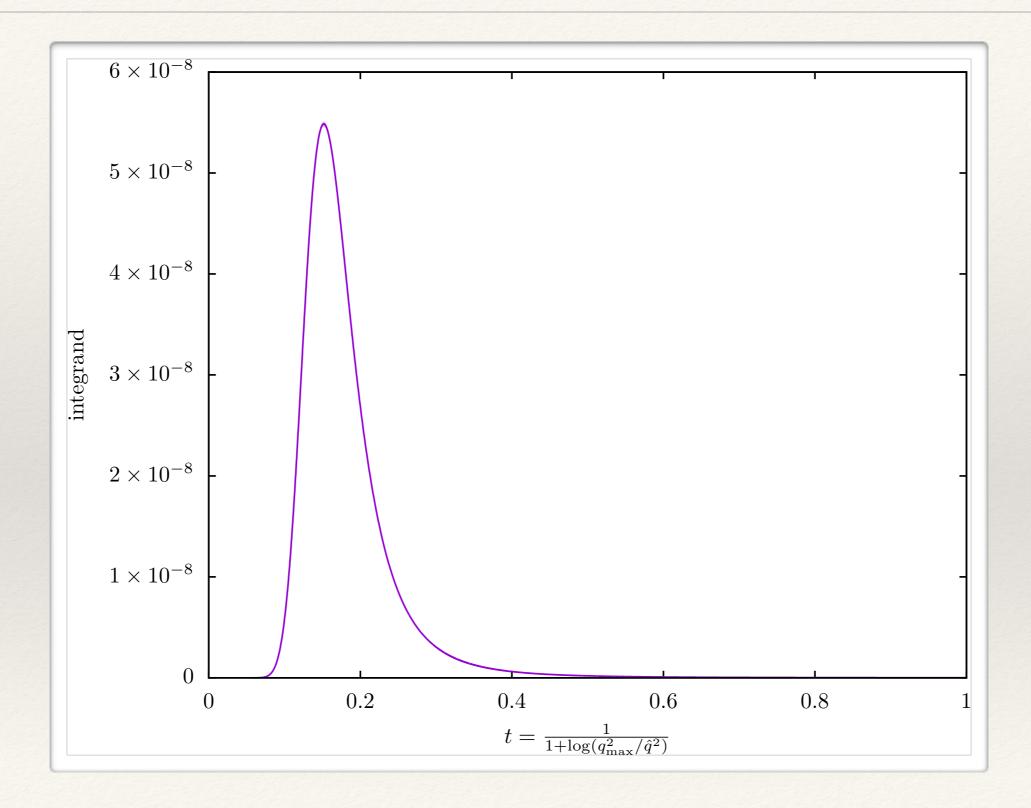
etc...

 Continuous moments are valid in finite volume up to exponentially small finite-volume effects

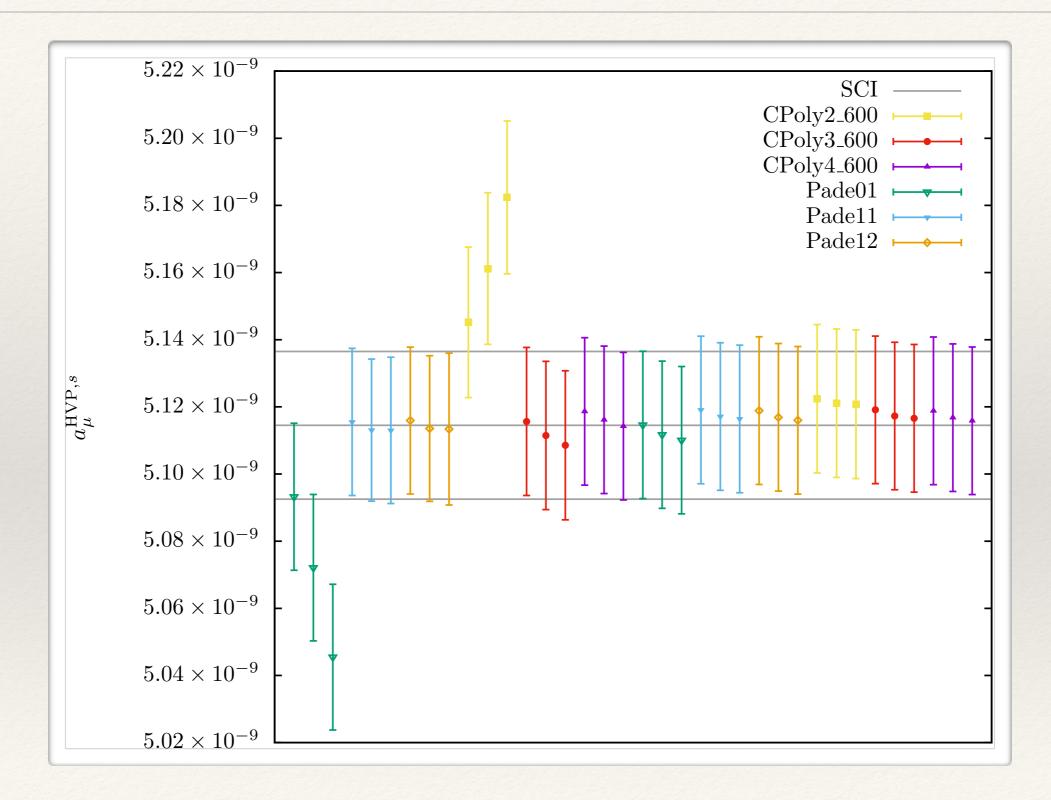
Preliminary results



Preliminary results



Preliminary results



Conclusions

- * It is possible to have easily a model-independent, smooth description of the HVP form factor at low q^2 .
- The SCI and MWS theorem give the mathematical foundations for "continuous-momenta" methods
- * The resulting interpolation error is comparable to the existing physical finite-volume effects.
- * This method is in very good agreement with a multitude of $low-q^2$ models.
- Apologies for the sloppiness, all the mathematical details will be released in a future write-up.

Outlook

- * High-precision data needed: what about light quarks?
- Quantitative finite-volume effects
- * Applicable in other lattice computations?

Thank you!