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Motivations



HVP and momentum quantisation
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❖ Finite volume: momentum quantisation.

❖ Dominated by momenta around                                          .

❖ Typical finite-volume quantum:                                                .          

❖ Problem generally circumvented by modelling the HVP 
form factor in the low-     region.

Anomalous magnetic moment of the muon in a dispersive approach

Vladyslav Pauk and Marc Vanderhaeghen
Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz D-55099, Germany

and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, Mainz D-55099, Germany
(Received 3 September 2014; published 18 December 2014)

We present a new general dispersive formalism for evaluating the hadronic light-by-light scattering
contribution to the anomalous magnetic moment of the muon. In the suggested approach, this correction is
related to the imaginary part of the muon’s electromagnetic vertex function. The latter may be directly
related to measurable hadronic processes by means of unitarity and analyticity. As a test we apply the
introduced formalism to the case of meson pole exchanges and find agreement with the direct two-loop
calculation.
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The keen interest in the anomalous magnetic moment of
the muon aμ is motivated by its high potential for probing
physics beyond the Standard Model (SM). The presently
observed 3–4σ discrepancy [1] allows for a number of
beyond SM scenarios which relate this deviation to
contributions of hypothetical particles, see [2] and refer-
ences therein. On the experimental side, the new measure-
ments both at Fermilab (E989) [3] as well as at J-PARC [4]
aim to reduce the experimental error on aμ to
δaμðexpÞ ¼ $16 × 10−11, which is a factor of 4 improve-
ment over the present value. The expected precision of the
new experiments will give access to scales up to
Λ ∼m=

ffiffiffiffiffiffiffi
δaμ

p
∼ 8 TeV, where m is the mass of the muon

[5], which makes it highly competitive to measurements at
the Large Hadron Collider (LHC). However, the interpre-
tation of aμ is undermined by theoretical uncertainties
of the strong-interaction contributions entering its SM
value. Depending on the analysis of these hadronic con-
tributions [1,6] the present SM uncertainty amounts to the
range δaμðSMÞ ¼ $ð49 − 58Þ × 10−11 which significantly
exceeds the future experimental accuracy. This motivates
an intense activity to reliably estimate contributions of
hadrons to aμ, see [7] and references therein.
The hadronic uncertainties mainly originate from had-

ronic vacuum polarization (HVP) and hadronic light-by-
light (HLbL) insertion diagrams shown in Fig. 1. The
dominant HVP contribution can be reliably estimated on
the basis of experimental information of electromagnetic
hadron production processes implemented via the
dispersion technique. The existing estimates are based on
data for eþe− → hadrons, data for eþe− → γ þ hadrons, as
well as τ decays (see [1] and references therein) yielding an
accuracy δaμðlowest-order HVPÞ ¼ $42.4 × 10−11 [6].
The ongoing experiments at eþe−-colliders (mainly
VEPP-2000 and BES-III) will provide valuable experi-
mental input to further constrain this contribution. It was
estimated in [1] that the forthcoming data will allow to
reduce the uncertainty in the HVP by around a factor of 2.

Unlike the HVP contribution, in most of the existing
estimates of the HLbL contribution, the description of the
nonperturbative light-by-light matrix element is based on
hadronic models rather than determined from data. These
approximations are based on a requirement of consistency
with the asymptotic constraints of QCD and predict that the
hadronic corrections are dominated by long-distance phys-
ics, namely due to exchange of the lightest pseudoscalar
states [8]. Unfortunately, a reliable estimate based on such
models is possible only within certain kinematic regimes.
This results in a large, mostly uncontrolled uncertainty
of aμ. The two main estimates of the HLbL contribution
to aμ yield the following [8,9]:

aμðHLbLÞ ¼ ð116$ 39Þ × 10−11; ð1Þ

aμðHLbLÞ ¼ð105$ 26Þ × 10−11: ð2Þ

To overcome the model dependence one may resort to
data-driven approaches for the HLbL contribution to aμ.
Recently, such an approach based on the analytic structure
of the HLbL tensor has been discussed in [10,11]. In the
present paper, we present a new data driven approach
for calculating aμ based on the analytic properties of the
muon’s electromagnetic vertex function. We express aμ
through a dispersive integral over the discontinuity of the

FIG. 1. The hadronic vacuum polarization (left panel) and light-
by-light scattering (right panel) contributions to the anomalous
magnetic moment of the muon.
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HVP and momentum quantisation
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❖ In practice: one computes                        on the lattice and 
Fourier-transform the result.

❖ Numerically speaking, we could use continuous momenta 
in the Fourier transform.

❖ How wrong would that be?

❖ Procedure already used in:  
[Feng et al., PRD 88(3), 034505, 2013] & [C. Lehner and T. Izubuchi, Lattice 2014]  
but assume an infinite time extent or infinite-volume data.



Sine cardinal interpolation (SCI)



SCI definition
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SCI definition
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sinc: “finite volume delta function”
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SCI definition
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❖ Physics:  
 
 
How fast                converges to the infinite volume 
correlation function for                  ?

❖ Maths:  
 
 
What is the extrapolation error for     small? 
Answer: Sampling theory



Shannon sampling theorem
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Shannon, 1946:

If the Fourier transform of    has its support included in
                         then                         .

Heuristic: a function with compact support can be 
exactly described by a discrete amount of information.
We know that already: Fourier series.



Home-brewed extension
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On some blackboard in Edinburgh, 2015:

If the Fourier transform of    decays faster than any power
of           ,                           decays faster than any power of    .

Heuristic: Poisson summation formula.

Any function infinitely differentiable with integrable 
derivatives (Sobolev functions) verifies the hypothesis.



MSW theorem
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Mc Namee, Steinger and Whitney, 1971 (1D):

If    can be analytically continued to the band                     ,
then                                              .

Heuristic: reconstruct the cardinal series through
residue theorem applied to a nicely chosen function.

The hypothesis implies that the Fourier transform of
decays exponentially (Paley-Wiener theorems).



Application to the HVP



HVP tensor in finite volume
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❖ In a hypercubic volume, Hodge decomposition plus a 
pinch of group theory:  
(cf. also [D. Bernecker & H. B. Meyer, EPJ A 47(11), pp. 148–16, 2011])  
 
 
   : dimension 6 constant (background density)

❖ Fourier transform using an arbitrary momentum:  
 
 
This defines the SCI     of the HVP form factor.



SCI and zero-mode subtraction
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❖ For simplicity:                            and                    spatial.

❖ Traditional computation of            :  
  
 
 
The zero-mode term diverges for              !

❖ Subtracted zero-mode                                                  :  
 
 
 
The zero-mode term converges to                  .



SCI error
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❖ Let’s assume that HVP finite-volume effects are  
decaying exponentially with          . 

❖ Spectral representation:              has an analytical 
continuation in the band                          .                          

❖ MWS theorem:            is the infinite-volume form factor 
up to                    effects.

❖ “We didn’t make things worse”



SCI and moments
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❖ One can compute consistently continuous moments in 
finite-volume:  
 
 
 
 
 
etc…

❖ Continuous moments are valid in finite volume up to 
exponentially small finite-volume effects



Preliminary results
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Preliminary results
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Preliminary results
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Conclusions
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❖ It is possible to have easily a model-independent, smooth 
description of the HVP form factor at low    .

❖ The SCI and MWS theorem give the mathematical 
foundations for “continuous-momenta” methods

❖ The resulting interpolation error is comparable to the 
existing physical finite-volume effects.

❖ This method is in very good agreement with a multitude of 
low-     models.

❖ Apologies for the sloppiness, all the mathematical details 
will be released in a future write-up.



Outlook
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❖ High-precision data needed: what about light quarks?

❖ Quantitative finite-volume effects

❖ Applicable in other lattice computations?



Thank you!

あ
り
が
と
う
!


