PDF from Hadronic Tensor on thers. ce

-Faparton Degrees of Freedom and OPE \%

* Connected Séa Partons and Gottfried Sumirule Violation Numericall Challenges and source method

?

Lattice 2015, Kobe
July 15, 2015

Hadronic Tensor in Euclidean Path-Integral Formalism

- Deep inelastic scattering In Minkowski space

$$
\frac{d^{2} \sigma}{d E^{\prime} d \Omega}=\frac{\alpha^{2}}{q^{4}}\left(\frac{E^{\prime}}{E}\right) l^{\mu \nu} W_{\mu \nu}
$$

$$
\begin{aligned}
& \left.T_{\mu v}\left(q^{2}, v\right)=\frac{1}{2 M_{N}} \int \frac{d^{4} x}{(2 \pi)^{4}} e^{i q \cdot x}<P \right\rvert\, T\left[J_{\mu}^{e m}(x) J_{v}^{e m}(0)|P\rangle,\right. \\
& W_{\mu v}\left(q^{2}, v\right)=\frac{1}{\pi} \operatorname{Im} T_{\mu v}=\frac{(2 \pi)^{3}}{2 M_{N}} \sum_{n} \delta^{4}\left(p_{n}-p+q\right)\langle P| J_{\mu}^{e m}|n\rangle\langle n| J_{v}^{e m}|P\rangle
\end{aligned}
$$

- Euclidean path-integral

- Euclidean W_{uv}

$$
\begin{aligned}
& \frac{\frac{2 E_{P} V}{2 M_{N}}<O_{N}(\vec{p}, t) \int \frac{d^{3} x}{2 \pi} e^{-i \vec{i} \cdot \vec{x}} J_{\mu}^{e m}\left(\vec{x}, t_{2}\right) J_{v}^{e m}\left(\overrightarrow{0}, t_{1}\right) O_{N}^{+}(\vec{p}, 0)>}{<O_{N}\left(\vec{p}, t-\left(t_{1}-t_{2}\right)\right) O_{N}(\vec{p}, 0)>} \\
& \xrightarrow[t-t_{2} \gg\left|\Delta E_{P}, t_{1} \gg\right| \Delta E_{P}]{ } \\
& \left.\tilde{W}_{\mu \nu}\left(q^{2}, \tau=t_{2}-t_{1}\right)=\frac{1}{2 M_{N}} \sum_{n}(2 \pi)^{2} \delta^{3}\left(\vec{p}_{n}-\vec{p}+\vec{q}\right)<P\left|J_{\mu}^{e m}\right| n\right\rangle \\
& \times<n\left|J_{v}^{e m}\right| N>e^{-\left(E_{n}-E_{p}\right) \tau} ;
\end{aligned}
$$

- Minkowski W_{pv} from Laplace transform

$$
\begin{aligned}
W_{\mu v}\left(q^{2}, v\right) & =\frac{1}{i} \int_{c-i \infty}^{c+i \infty} d \tau e^{v \tau} \tilde{W}_{\mu v}\left(q^{2}, \tau\right) \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\infty} d \tau \mathrm{e}^{v \tau+i \varepsilon} \tilde{W}_{\mu \nu}\left(q^{2}, \tau\right)
\end{aligned}
$$

Cat's ears diagrams are suppressed by $O\left(1 / Q^{2}\right)$.

- $W_{\mu v}(p, q)=-W_{1}\left(q^{2}, v\right)\left(g_{\mu v}-\frac{q_{\mu} q_{v}}{q^{2}}\right)+W_{2}\left(q^{2}, v\right)\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)\left(p_{v}-\frac{p \cdot q}{q^{2}} q_{v}\right)$
- Large momentum frame

$$
v W_{2}\left(q^{2}, v\right) \xrightarrow[|\bar{p}| \gg|\bar{c}|]{ } F_{2}\left(x, Q^{2}\right)=x \sum_{i} e_{i}^{2}\left(q_{i}\left(x, Q^{2}\right)+\bar{q}_{i}\left(x, Q^{2}\right)\right) ; x=\frac{Q^{2}}{2 p \cdot q}
$$

- Parton degrees of freedom: valence, connected sea and disconnected sea

\mathbf{U}	\mathbf{d}	\mathbf{S}
$u_{V}(x)+u_{C S}(x)$	$d_{V}(x)+d_{C S}(x)$	
$\bar{u}_{C S}(x)$	$\bar{d}_{C S}(x)$	
$u_{D S}(x)+\bar{u}_{D S}(x)$	$d_{D S}(x)+\bar{d}_{D S}(x)$	$s_{D S}(x)+\bar{s}_{D S}(x)$

Properties of this separation

- Gauge invariant
- Topologically distinct as far as the quark lines are concerned
- Frame dependent
- $|\vec{p}| \gg M_{N}$ to have parton interpretation
- Parton model has a natural interpretation in the large momentum frame where the intermediate $q \bar{q}$ pair states induced by the currents are suppressed.

2) Gottfried Sum Rule Violation

$S_{G}\left(0,1 ; Q^{2}\right)=\frac{1}{3}+\frac{2}{3} \int_{0}^{1} d x\left(\bar{u}_{P}(x)-\bar{d}_{P}(x)\right) ; \quad S_{G}\left(0,1 ; Q^{2}\right)=\frac{1}{3}($ Gottfried Sum Rule $)$
NMC: $\quad S_{G}\left(0,1 ; 4 \mathrm{GeV}^{2}\right)=0.240 \pm 0.016(5 \sigma$ from GSR)

two flavor traces $\left(\bar{u}_{D S}=\bar{d}_{D S}\right) \quad$ one flavor trace $\left(\bar{u}_{C S} \neq \bar{d}_{C S}\right)$
K.F. Liu and S.J. Dong, PRL 72, 1790 (1994)

$$
\begin{aligned}
\text { Sum }=\frac{1}{3}+ & \frac{2}{3} \int_{0}^{1} d x\left(\bar{u}_{C S}(x)-\bar{d}_{C S}(x)\right), \\
& =\frac{1}{3}+\frac{2}{3}\left[n_{\bar{u}_{C S}}-n_{\bar{d}_{C S}}\right]\left(1+O\left(\alpha_{s}^{2}\right)\right)
\end{aligned}
$$

Connected Sea Partons
K.F. Liu, W.C. Chang, H.Y. Cheng, J.C. Peng, PRL 109, 252002 (2012)

$$
\begin{aligned}
& x(\bar{d}+\bar{u})_{C S}(x)=x(\bar{d}+\bar{u})(x)-\frac{1}{R} x(s+\bar{s})(x) ; \\
& R=\frac{\langle x\rangle_{s}}{\langle x\rangle_{u}(D I)} \text { (lattice) } \sim 0.857 \text { (T. Doi, M. Sun) }
\end{aligned}
$$

$$
\begin{gathered}
q_{V}, q_{C S}, \bar{q}_{C S} \sim_{x \rightarrow 0} x^{-\alpha_{R}}\left(x^{-1 / 2}\right) \\
q_{D S}, \bar{q}_{D S} \sim_{x \rightarrow 0} x^{-1}
\end{gathered}
$$

Numerical Challenges

- Lattice calculation of the hadronic tensor - no renormalization, continuum and chiral limits, direct comparison with expts \longrightarrow PDF from continuum factorization theorem
- Fourier transform $W_{\mu v}\left(q^{2}, v\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\infty} d \tau \mathrm{e}^{v \tau+i \varepsilon} \tilde{W}_{\mu v}(\vec{q}, \tau)$
- Improved maximum entropy method
(A. Rothkopf - 1110.6285)
- Fitting with multiple states: $\tilde{W}_{\mu v}(\vec{q}, \tau)=\sum W_{n} e^{-\left(E_{n}-E_{p}\right) \tau}$
- Fictitious heavy quark to obtain moments ${ }^{n}$ from OPE (W. Detmold and D. Lin, 0507007)

Kinematics

- Bjorken $\mathrm{x} \quad x=\frac{Q^{2}}{2 p \cdot q}=\frac{\vec{q}^{2}-v^{2}}{2(\mathrm{vE}-\vec{p} \cdot \vec{q})}$
- Decay at large $\tau \rightarrow v-\left(\mathbb{E}_{n}-E_{p}\right)<0$
- Range of $\mathbf{x}-\vec{q} \| \vec{p} \quad Q^{2}=2 \mathrm{GeV}^{2}$

$$
\begin{aligned}
& |\vec{p}|=3 \mathrm{GeV},|\vec{q}|=2 \mathrm{GeV}, v=-1.4 \mathrm{GeV} \Rightarrow x=0.64 \\
& |\vec{p}|=3 \mathrm{GeV},|\vec{q}|=2 \mathrm{GeV}, v=1.4 \mathrm{GeV} \Rightarrow x=0.096
\end{aligned}
$$

Source method

- Reduce the $4-\mathrm{pt}$ fn to $3-\mathrm{pt}$ fn

- Sequential source for $J_{\mu}\left(\vec{q}, t_{1}\right)$
- Quark propagator from t_{1} to t

$$
\lim _{\theta \rightarrow 0} \frac{d}{d \theta}\left(\frac{1}{D+\theta x}\right)=\frac{1}{D} x \frac{1}{D} \quad x=\sum_{t_{2}=t_{1}+1}^{t} J_{v}\left(-\vec{q}, t_{2}\right) e^{v\left(t_{2}-t_{1}\right)}
$$

- Exchange insertion \rightarrow use source with definite momentum

Summary

- Hadronic tensor with the source method is numerically equivalent to 3-point function calculation.
- Improved maximum entropy to go to the Minkowski space.
- Large momentum frame, but NO renormalization!
- Other applications: NEDM with CP violating fermion bilinear terms, radiative correction of parity violating e p scattering.

Comments

- The results are the same as derived from the conventional operator product expansion.
- The OPE turns out to be TayCor expansion of functions in the path-integral formalism.
- Contrary to conventional OPE, the pathintegral formalism admits separation of $C I$ and DI.
- For O_{f}^{n} with definite n, there is only one CI and one DI in the three-point function, i.e. (a') is the same as (σ^{\prime}). Thus, one cannot separate quark contribution from that of antiquark in matrix elements.

$$
\text { X. Ji, PRL, 110, } 262002 \text { (2013) }
$$

§ Take the large- P_{z} limit:

Product of lattice gauge links
∞_{∞} At $^{z} \longrightarrow \infty$ limit, twist-2 parton distribution is recovered ω_{∞} For finite P^{z}, corrections are needed

Xiangdong Ji, this Thursday; HWL et al in progress

Theoretical Issues

- Relatively simple numerically
- Renormalization of quasi-distribution and factorization

$$
\tilde{q}\left(x, \mu^{2}, P_{z}\right)=\int_{0}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P_{z}}\right) q\left(y, \mu^{2}\right)+O\left(\frac{\Lambda^{2}}{P_{z}^{2}}, \frac{M^{2}}{P_{z}^{2}}\right)
$$

- Perturbative lattice renormalization?
- RI/MOM renormalization scheme for the CI ?
- When will $x_{B}=x_{F}$?

d and \bar{d} from CTEQ6 (JW Chen)
$\bar{d}(|x|)=-d(-|x|)$

present P_{z}
- Renormalization for the disconnected insertion

Summary

- Hadronic tensor calculation is numerically tough, but theoretically interpretation is easy.
- Parton distribution function calculation at IMF is numerically easy, but theoretical interpretation is not straightforward.

