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Hadronic Tensor in Euclidean Path-Integral Formalism 

•  Deep inelastic scattering  
    In Minkowski space 
 
 
 
 
l  Euclidean path-integral 
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= α 2
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2EPV
2M N

< ON ( !p,t) d 3x
2π

 e− i!q⋅!x Jµ
em( !x,t 2 )Jν

em(
!
0,t 1)ON

+ ( !p,0) >∫
< ON ( !p,t − (t1 − t2 ))ON ( !p,0) >
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⎯ →⎯⎯⎯⎯⎯⎯

"Wµν (q2 ,τ = t2 − t1) = 1
2M N
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n
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•   Euclidean Wµν 

l  Minkowski Wµν from Laplace transform 
   

 

Wµν (q2,ν ) = 1
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∫
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Cat’s ears diagrams are suppressed by O(1/Q2).  
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l   

•   Large momentum frame 

l  Parton degrees of freedom: valence, connected sea and 
disconnected sea 

 
        
 

 
νW2 (q2,ν ) |p|>>|q|⎯ →⎯⎯ F2 (x,Q2 ) = x ei

2

i
∑ (qi (x,Q

2 )+ qi x,Q
2 )( );   x = Q2

2p ⋅q

Wµν (p,q) = −W1(q
2,ν )(gµν −

qµqν
q2

)+W2 (q
2,ν )(pµ −

p ⋅q
q2

qµ )(pν −
p ⋅q
q2

qν )

       u                   d                 s 
uV (x)+ uCS (x) dV (x)+ dCS (x)

uCS (x) dCS (x)

uDS (x)+ uDS (x) dDS (x)+ dDS (x) sDS (x)+ sDS (x)
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Properties of this separation 

•  Gauge invariant 
•  Topologically distinct as far as the quark lines are 

concerned 
•  Frame dependent                   
•                   to have parton interpretation 
•  Parton model has a natural interpretation in the 

large momentum frame where the intermediate  
          pair states induced by the currents are 

suppressed.             
qq

 |
!p |  ≫  MN
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2)   Gottfried Sum Rule Violation 

       NMC: 
 
 
 
 
 
 
       two flavor traces (            )       one flavor trace (            ) 
 
       K.F. Liu and S.J. Dong, PRL 72, 1790 (1994) 
 
 
        
    

SG (0,1;Q2 ) = 1
3
+ 2

3
dx (uP (x)− dP

0

1

∫ (x));    SG (0,1;Q2 ) = 1
3

(Gottfried Sum Rule)

SG (0,1;4 GeV2 ) = 0.240 ± 0.016 (5σ  from GSR)
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x(d + u )CS (x) = x(d + u )(x)− 1
R

x(s+ s )(x);

R =
〈x〉s

〈x〉u (DI )
(lattice) ∼ 0.857 (T. Doi, M. Sun)

Connected Sea Partons 

CT10 lattice expt 

K.F. Liu, W.C. Chang, H.Y. Cheng, 
J.C. Peng, PRL 109, 252002 (2012) 
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qV ,  qCS  ,  qCS ~x→0   x−αR (x−1/2 )

qDS  ,  qDS ~x→0   x−1
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 Numerical Challenges 

•  Lattice calculation of the hadronic tensor – no 
renormalization, continuum and chiral limits, direct 
comparison with expts          PDF from continuum 
factorization theorem 

•  Fourier transform  
•  Improved maximum entropy method 
    (A. Rothkopf – 1110.6285) 
•  Fitting with multiple states:  
•  Fictitious heavy quark to obtain moments from OPE 
    (W. Detmold and D. Lin, 0507007) 
     

   
Wµν (q2 ,ν ) =  limε→0  1

π
Im dτ

−∞

∞

∫  eντ+iε  !Wµν ( "q,τ )

   
!Wµν ( "q,τ ) = Wn

n
∑ e−( En−Ep )τ



                    12 

Kinematics 

•  Bjorken x 

•  Decay at large      à 
•  Range of x 

   
x = Q2

2 p ⋅q
=

!q2 −ν 2

2(vE p−
!p ⋅ !q)

  
ν  - (En − Ep ) < 0

   −
!q  "  !p

   

| !p |  = 3 GeV, | !q | = 2 GeV, ν  = - 1.4 GeV ⇒  x = 0.64

   

| !p |  = 3 GeV, | !q | = 2 GeV, ν  =  1.4 GeV ⇒  x = 0.096

2 22 GeVQ =

τ
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Source method  
 

•  Reduce the 4-pt fn to 3-pt fn 

•  Sequential source for 
•  Quark propagator from t1 to t 

•  Exchange insertion à use source with definite momentum  

 

0

×

t

×
1t 2t

t

× ×
1t 2t

 Jµ (!q,  t1)  
!q

 Jν (− !q,  t2 )  −
!q

t

 Jµ (!q,  t1)

lim
θ→0

d
dθ

1
D +θx

⎛
⎝⎜

⎞
⎠⎟ =

1
D
x 1
D  

x = Jν
t2=t1+1

t

∑ (− !q,  t2 ) eν (t2−t1 )
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    Summary 
•   Hadronic tensor with the source method is 

numerically equivalent to 3-point function 
calculation. 

•  Improved maximum entropy to go to the 
Minkowski space. 

• Large momentum frame, but NO 
renormalization!  

•   Other applications: NEDM with CP violating 
fermion bilinear terms, radiative correction 
of parity violating e p scattering.  
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Comments 

• The results are the same as derived from the 
conventional operator product expansion. 

• The OPE turns out to be Taylor expansion of 
functions in the path-integral formalism. 

• Contrary to conventional OPE, the path-
integral formalism admits separation of CI 
and DI. 

• For        with definite n, there is only one CI 
and one DI in the three-point function, i.e. (a’) 
is the same as (b’). Thus, one cannot separate 
quark contribution from that of antiquark in 
matrix elements. 

 

Of
n
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X. Ji, PRL, 110, 262002 (2013) 
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 Theoretical Issues  

•  Relatively simple numerically  
•  Renormalization of quasi-distribution and 

factorization 

–  Perturbative lattice renormalization ? 
–  RI/MOM renormalization scheme for the CI ? 

   
!q(x,µ2 , Pz ) = dy

y
Z( x

y
, µ
Pz

) q( y,µ2

0

1

∫ ) + O(Λ
2

Pz
2 , M 2

Pz
2 )
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• When will xB = xF ? 

•  Renormalization for the disconnected insertion 
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(| |) ( | |)d x d
d d

x= − −

x
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    Summary 

•   Hadronic tensor calculation is numerically 
tough, but theoretically interpretation is 
easy. 

• Parton distribution function calculation at 
IMF is numerically easy, but theoretical 
interpretation is not straightforward. 


