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Fig. 3. (Color online) Schematic picture of the energy spectrum of bismuth
(group V elements). For the single atom, the p-band is half-filled. By the
dimerization, an energy gap opens, which lowers the total energy: the system
becomes insulator. With a small lattice distortion, the conduction and valence
bands are hybridized in order to gain the kinetic energy of carriers and lower
the total energy further.

Table III. Crystal structure parameters of the group V semimetals and
some IV-VI compounds.66) Note that PbS, PbSe and PbTe are all semicon-
ductors.

↵ u
As 54�100 0.226
Sb 57�6.50 0.233
Bi 57�14.20 0.237
PbS 60� 0.25
PbSe 60� 0.25
PbTe 60� 0.25

% Sb tends to be a narrow-gap semiconductor. Note that for
the IV-VI compounds, where there are ten valence electrons
in the unit cell of the rock-salt structure, the dimerization is
stronger than group V elements due to the stronger ionization,
so that the system favors the insulating state.

The followings are the details of the crystal structure of
group V elements. It originates from the two interpenetrat-
ing fcc lattices like the rock-salt structure. If the origin of one
sublattice is taken at (0, 0, 0), that of the other sublattice is
taken at (2u, 2u, 2u). For the undistorted rock-salt structure,
u = 1/4, and the rhombohedral angle ↵, which is the angle
between the unit vectors, is ↵ = 60�. The rhombohedral struc-
ture is obtained by the following two kind of distortions:

• shift the location of atoms in one sublattice relative to
the other along the body diagonal (111) direction,

• stretch the both sublattice along the (111) direction.

The former modifies u from 1/4, and the latter changes ↵ from
60�. (The initial length of the unit vectors are kept.) The rhom-
bohedral structure so obtained loses many symmetries from
the simple cubic. The parameters for the group V semimetals
and some IV-VI compounds are summarized in Table. III.

The Brilouin zone for the group V semimetals is shown
in Fig. 2 (b). It is given by squeezing the Brillouin zone of
fcc lattice, the truncated octahedron, along the trigonal direc-
tion. The high symmetry points are labeled similarly to that
for the fcc lattice. The exception is the L-points. The origi-
nal L-points of the fcc lattice change their symmetry: the two
points of higher symmetry are labeled by T , and the remain-
ing six equivalent points with lower symmetry are labeled by
L.

There are one trigonal axis along �T direction, three bi-
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Fig. 4. (Color online) Band structure of bismuth by the tight-binding cal-
culation.67)

nary axes along TW, three bisectrix axes along TU. Usually,
binary, bisectrix and trigonal axes are denoted by x, y and z or
1, 2 and 3, respectively.

2.2 Electron energy spectrum of bismuth
Various first principle calculations for bismuth have been

carried out so far (e.g., the pseudo potential approach,23) the
APW method24, 25) and the pseudo potential DFT68)), but the
accuracy is not enough. (The required accuracy is the energy
scale of the band gap ⇠ 15meV.) The energy dispersion ob-
tained by Liu and Allen with the tight-binding calculation67)

is shown in Fig. 4. This is one of the most reliable band calcu-
lation for bismuth. Liu and Allen considered up to the third-
neighbor bonding with the on-site spin-orbit interaction, and
adjust the parameters in order to fit with the experimental re-
sults. They determined the parameters in order to reproduce
(i) the overlap between the highest valence and lowest con-
duction bands, (ii) the Fermi energy, (iii) the e↵ective masses,
(iv) the shapes of the Fermi surfaces, and (v) the band gaps
near the Fermi level. Their results give good agreements with
experimental results.

Recently, the angle-resolved Landau spectrum measure-
ments with high accuracy have carried out,69–72) and the elec-
tronic energy spectrum have been determined in more great
detail.73, 74) The “extended” Wol↵ Hamiltonian, which takes
into account the contributions from higher energy bands in
addition to the two band near the Fermi level (considered
by the Wol↵ Hamiltonian, cf. §3), was newly devised based
on the k · p theory in order to fit the recent experimental
progress;71, 72) this gives the best fitting for the recent experi-
mental results including the spin splittings.

The e↵ective mass of bismuth so obtained is quite small.
For example, the cyclotron mass of the electron at L-point
of bismuth is m⇤c = 0.00189 for H || bisectrix axis.71) The
small cyclotron mass leads to the large g-factor, (g⇤ = 1060
for m⇤c = 0.00189), since the g-factor of the Dirac electron
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Bi

Bi1−x Sbx

ν = 0 ν = 1

normal

topological insulator

vacuum

Topological number

ν =
1

4π2

∫
Tr

(
AdA+

2

3
A3

)
A: Berry connection

TI surface state = domain-wall fermion

T. Kimura (Keio U) July 2015 5 / 15



A massless fermion carries topological charge (à la index thm)
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Topological insulator

Bi Sb, Bi Se [Hsieh et al.] [Zhang et al.]

on the electron system6 and inverted bands at an odd number of high-
symmetry points in their bulk 3D Brillouin zones, are predicted to
exhibit an odd number of surface state crossings, precluding their
adiabatic continuation to the atomic insulator3,7–13. Such ‘topological
metals’9–11 cannot be realized in a purely 2D electron gas system.

In our experimental case, namely the (111) surface of Bi0.9Sb0.1, the
four time-reversal-invariant momenta are located at !CC and three !MM-
points that are rotated by 60u relative to one another. Owing to the
three-fold crystal symmetry (A7 bulk structure) and the observed
mirror symmetry of the surface Fermi surface across kx 5 0 (Fig. 2),
these three !MM-points are equivalent (and we henceforth refer to them
as a single point, !MM). The mirror symmetry (E(ky) 5 E(2ky)) is also
expected, from time-reversal invariance exhibited by the system. The
complete details of the surface state dispersion observed in our
experiments along a path connecting !CC and !MM are shown in Fig. 3a;
finding this information is made possible by our experimental sepa-
ration of surface states from bulk states. As for bismuth, two surface

bands emerge from the bulk band continuum near !CC to form a
central electron pocket and an adjacent hole lobe25–27. It has been
established that these two bands result from the spin-splitting of a
surface state and are thus singly degenerate27,28.

On the other hand, the surface band that crosses EF at
2kx < 0.5 Å21, and forms the narrow electron pocket around !MM, is
clearly doubly degenerate, as far as we can determine within our
experimental resolution. This is indicated by its splitting below EF

between 2kx < 0.55 Å21 and !MM, as well as the fact that this splitting
goes to zero at !MM in accordance with Kramers’ theorem. In semime-
tallic single-crystal bismuth, only a single surface band is observed to
form the electron pocket around !MM (refs 29 and 30). Moreover, this
surface state overlaps, and hence becomes degenerate with, the bulk
conduction band at L (L projects to the surface point !MM) owing to the
semimetallic character of bismuth (Fig. 3b). In Bi0.9Sb0.1, on the other
hand, the states near !MM fall completely inside the bulk energy gap,
preserving their purely surface character at !MM (Fig. 3a). The surface
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Figure 3 | The topological gapless surface states in bulk insulating
Bi0.9Sb0.1. a, The surface-band-dispersion second-derivative image of
Bi0.9Sb0.1 along !CC{ !MM. The shaded white area shows the projection of the
bulk bands based on ARPES data, as well as a rigid shift of the tight binding
bands to sketch the unoccupied bands above the Fermi level. A non-intrinsic
flat band of intensity near EF generated by analysis of the second-derivative
image was rejected to isolate the intrinsic dispersion. The Fermi crossings of
the surface state are denoted by yellow circles, with the band near
2kx < 0.5 Å21 counted twice owing to double degeneracy. The red lines are
guides to the eye. An in-plane rotation of the sample by 60u produced the
same surface state dispersion. The EDCs along !CC{ !MM are shown in the right-
hand diagram. There are a total of five crossings between !CC and !MM, which
indicates that these surface states are topologically non-trivial. The number
of surface state crossings in a material (with an odd number of Dirac points)
is related to the topological Z2 invariant (see text). b, The resistivity curves of
Bi and Bi0.9Sb0.1 reflect the contrasting transport behaviours. The presented
resistivity curve for pure bismuth has been multiplied by a factor of 80 for
clarity. c, Schematic variation of bulk band energies of Bi12xSbx as a

function of x (based on band calculations and on refs 7 and 17). Bi0.9Sb0.1 is a
direct-gap bulk Dirac point insulator well inside the inverted-band regime,
and its surface forms a ‘topological metal’—the 2D analogue of the one-
dimensional edge states in quantum spin Hall systems. d, ARPES intensity
integrated within 610 meV of EF originating solely from the surface state
crossings. The image was plotted by stacking along the negative kx-direction
a series of scans taken parallel to the ky-direction. e, Outline of the Bi0.9Sb0.1

surface state ARPES intensity near EF measured in d. White lines show the
scan directions ‘1’ and ‘2’. f, Surface band dispersion along direction ‘1’ taken
with hn 5 28 eV, and the corresponding EDCs (g). The surface Kramers
degenerate point, critical in determining the topological Z2 class of a band
insulator, is clearly seen at !MM, approximately 15 6 5 meV below EF. (We note
that the scans are taken along the negative kx-direction, away from the bulk
L-point.) h, Surface band dispersion along direction ‘2’ taken with
hn 5 28 eV, and the corresponding EDCs (i). This scan no longer passes
through the !MM-point, and the observation of two well-separated bands
indicates the absence of Kramers degeneracy as expected, which
corroborates the result in a.
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Figure 4 | Surface states. a–d, Energy and momentum dependence of the LDOS for Sb2Se3 (a), Sb2Te3 (b), Bi2Se3 (c) and Bi2Te3 (d) on the [111] surface.
Here, the warmer colours represent higher LDOS. The red regions indicate bulk energy bands and the blue regions indicate bulk energy gaps. The surface
states can be clearly seen around the 0 point as red lines dispersing in the bulk gap for Sb2Te3, Bi2Se3 and Bi2Te3. No surface state exists for Sb2Se3.

be carried out on the other three materials, from which we see that
Sb2Te3 and Bi2Te3 are qualitatively the same as Bi2Se3, whereas the
SOCof Sb2Te3 is not strong enough to induce such an inversion.

Topological surface states
The existence of topological surface states is one of the most
important properties of the topological insulators. To see the
topological features of the four systems explicitly, we calculate the
surface states of these four systems on the basis of an ab initio
calculation. First we construct the maximally localized Wannier
function (MLWF) from the ab initio calculation using the method
developed by Marzari and co-workers21,22. We divide the semi-
infinite system into a surface slab with finite thickness and the
remaining part as the bulk. The MLWF hopping parameters for the
bulk part can be constructed from the bulk ab initio calculation, and
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calculation of the slab, in which the surface correction to the lattice
constants and band structure have been considered self-consistently
and the chemical potential is determined by the charge neutrality
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we use an iterative method23,24 to obtain the surface Green’s
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Low-energy effective model
As the topological nature is determined by the physics near the 0
point, it is possible to write down a simple effective Hamiltonian

to characterize the low-energy long-wavelength properties of
the system. Starting from the four low-lying states |P1+

z ," (#)i
and |P2�

z ," (#)i at the 0 point, such a Hamiltonian can be
constructed by the theory of invariants25 for the finite wave
vector k. On the basis of the symmetries of the system, the
generic form of the 4⇥ 4 effective Hamiltonian can be written
down up to the order of O(k2), and the tunable parameters in
the Hamiltonian can be obtained by fitting the band structure
of our ab initio calculation. The important symmetries of the
system are time-reversal symmetry T , inversion symmetry I and
three-fold rotation symmetry C3 along the z axis. In the basis of
(|P1+

z ,"i, |P2�
z ,"i, |P1+

z ,#i, |P2�
z ,#i), the representation of the

symmetry operations is given by T = K · i� y ⌦ I2⇥2, I = I2⇥2 ⌦ ⌧3
andC3 = exp(i(⇡/3)� z ⌦I2⇥2), whereK is the complex conjugation
operator, � x,y,z and ⌧ x,y,z denote the Pauli matrices in the spin and
orbital space, respectively. By requiring these three symmetries and
keeping only the terms up to quadratic order in k, we obtain the
following generic form of the effective Hamiltonian:

H (k) = ✏0(k)I4⇥4 +

0

B@

M(k) A1kz 0 A2k�
A1kz �M(k) A2k� 0
0 A2k+ M(k) �A1kz

A2k+ 0 �A1kz �M(k)

1

CA

+ o(k2) (1)

with k± = kx ± iky , ✏0(k)= C +D1k2z +D2k2? and M(k)=M �B1
k2z � B2k2?. By fitting the energy spectrum of the effective
Hamiltonian with that of the ab initio calculation, the parameters
in the effective model can be determined. For Bi2Se3, our fitting
leads to M = 0.28 eV, A1 = 2.2 eVÅ, A2 = 4.1 eVÅ, B1 = 10 eVÅ2,
B2 = 56.6 eVÅ2, C = �0.0068 eV, D1 = 1.3 eVÅ2, D2 = 19.6 eVÅ2.
Except for the identity term ✏0(k), the Hamiltonian (1) is
nothing but the 3D Dirac model with uniaxial anisotropy along
the z-direction and k-dependent mass terms. From the fact
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Overlap properties

Ginsparg–Wilson relation

γ5D +Dγ5 = aDγ5D

Discretization effect (finite a)

γ5D +DΓ5 = 0 w/ Γ5 = γ5 (1− aD)

particle-antiparticle (hole) asymmetry (d = 3 + 1)
[Lüscher]

ψ → eiθΓ5ψ , ψ̄ → ψ̄ eiθγ5
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Another expression

D +D† = aD†D
(
γ5Dγ5 = D†

)

A solution: D =
1

a
(1− V ) , V † = V −1

Particle-hole asymmetry in d = 2 + 1
[Bietenholz-Nishimura] [Kikukawa-Neuberger]

ψ → iRV ψ , ψ̄ → i ψ̄R
or ψ → iRψ , ψ̄ → i ψ̄ V R

R : reflection operator (x, y, z) → (−x,−y,−z)

RDR = D†
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How to detect it?

Magneto-optical conductivity

[Tabert–Carbotte]

7

FIG. 5. (Color online) µ = 0 longitudinal conductivity in a
TI for varying ∆. The energy of the first absorption process
is schematically illustrated by the arrows in the inset. As
∆ increases, the zeroth LL decreases in energy. This shift is
evident in the onset frequency of the first optical transition.

ative µ is examined. In frame (a), the results of gapless
graphene at the K-point are shown; due to the particle-
hole symmetry, the response is identical for ±µ. The op-
tical transitions which lead to this set of absorption lines
are shown in Fig. 7(a) where the arrows are color-coded
to correspond to Fig. 6(a). Note that the positions of the
EN,− LLs are at the negative of the EN,+ levels. For posi-
tive µ, the five arrows on the left (black) apply; while, for
negative µ, it is the five green arrows on the right which
are relevant. In both cases, each transition has a one-
to-one correspondence with the other set. Figure 6(b),
displays the results for a TI when ∆ = 0. Here the finite
Schrödinger term breaks particle-hole symmetry. This is
clear from the transitions shown in Fig. 7(b). In this case,
even for ∆ = 0, the negative energy levels do not mirror
the positive energy set. The N = 0 level is no longer at
zero energy but rather has been pushed to positive en-
ergy E0/2. The EN,+ energy is also larger than |EN,−|.
The black arrow between N = 0 and N = 1+ (which ap-
plies to the lowest line for positive µ) is longer by E0/2
than the arrows between the N = 1− and N = 0 levels
which is the first transition when µ is negative. Thus,
in Fig. 6(b), the first peak of the negative µ response
(purple) is lower in Ω than the corresponding positive µ
peak (black). The results for a gapped TI are shown in
frame (c) of Fig. 6 with the corresponding optical transi-
tions shown in Fig. 7(c). Again, an obvious asymmetry
is present between the ±µ regimes. The asymmetry is
now much larger than that shown in frame (b) for two
reasons: the finite gap adds asymmetry; the larger value

FIG. 6. (Color online) Longitudinal conductivity in (a) gap-
less graphene, and (b) a gapless and (c) gapped TI for positive
and negative µ. (a) For graphene, particle-hole symmetry en-
sures the ±µ results are identical. For a TI [(b)-(c)], the ±µ
results are different which emphasizes the asymmetry of the
LLs. The shading under the dashed blue curve is for empha-
sis. Note the missing peak in this case.

of chemical potential enhances it is well. An additional

Asymmetric shift only for zero modes

T. Kimura (Keio U) July 2015 10 / 15

http://arxiv.org/abs/1505.06660


How to detect it?

Magneto-optical conductivity [Tabert–Carbotte]

7

FIG. 5. (Color online) µ = 0 longitudinal conductivity in a
TI for varying ∆. The energy of the first absorption process
is schematically illustrated by the arrows in the inset. As
∆ increases, the zeroth LL decreases in energy. This shift is
evident in the onset frequency of the first optical transition.

ative µ is examined. In frame (a), the results of gapless
graphene at the K-point are shown; due to the particle-
hole symmetry, the response is identical for ±µ. The op-
tical transitions which lead to this set of absorption lines
are shown in Fig. 7(a) where the arrows are color-coded
to correspond to Fig. 6(a). Note that the positions of the
EN,− LLs are at the negative of the EN,+ levels. For posi-
tive µ, the five arrows on the left (black) apply; while, for
negative µ, it is the five green arrows on the right which
are relevant. In both cases, each transition has a one-
to-one correspondence with the other set. Figure 6(b),
displays the results for a TI when ∆ = 0. Here the finite
Schrödinger term breaks particle-hole symmetry. This is
clear from the transitions shown in Fig. 7(b). In this case,
even for ∆ = 0, the negative energy levels do not mirror
the positive energy set. The N = 0 level is no longer at
zero energy but rather has been pushed to positive en-
ergy E0/2. The EN,+ energy is also larger than |EN,−|.
The black arrow between N = 0 and N = 1+ (which ap-
plies to the lowest line for positive µ) is longer by E0/2
than the arrows between the N = 1− and N = 0 levels
which is the first transition when µ is negative. Thus,
in Fig. 6(b), the first peak of the negative µ response
(purple) is lower in Ω than the corresponding positive µ
peak (black). The results for a gapped TI are shown in
frame (c) of Fig. 6 with the corresponding optical transi-
tions shown in Fig. 7(c). Again, an obvious asymmetry
is present between the ±µ regimes. The asymmetry is
now much larger than that shown in frame (b) for two
reasons: the finite gap adds asymmetry; the larger value

FIG. 6. (Color online) Longitudinal conductivity in (a) gap-
less graphene, and (b) a gapless and (c) gapped TI for positive
and negative µ. (a) For graphene, particle-hole symmetry en-
sures the ±µ results are identical. For a TI [(b)-(c)], the ±µ
results are different which emphasizes the asymmetry of the
LLs. The shading under the dashed blue curve is for empha-
sis. Note the missing peak in this case.

of chemical potential enhances it is well. An additional

Asymmetric shift only for zero modes

T. Kimura (Keio U) July 2015 10 / 15

http://arxiv.org/abs/1505.06660


How to detect it?

Magneto-optical conductivity [Tabert–Carbotte]

7

FIG. 5. (Color online) µ = 0 longitudinal conductivity in a
TI for varying ∆. The energy of the first absorption process
is schematically illustrated by the arrows in the inset. As
∆ increases, the zeroth LL decreases in energy. This shift is
evident in the onset frequency of the first optical transition.

ative µ is examined. In frame (a), the results of gapless
graphene at the K-point are shown; due to the particle-
hole symmetry, the response is identical for ±µ. The op-
tical transitions which lead to this set of absorption lines
are shown in Fig. 7(a) where the arrows are color-coded
to correspond to Fig. 6(a). Note that the positions of the
EN,− LLs are at the negative of the EN,+ levels. For posi-
tive µ, the five arrows on the left (black) apply; while, for
negative µ, it is the five green arrows on the right which
are relevant. In both cases, each transition has a one-
to-one correspondence with the other set. Figure 6(b),
displays the results for a TI when ∆ = 0. Here the finite
Schrödinger term breaks particle-hole symmetry. This is
clear from the transitions shown in Fig. 7(b). In this case,
even for ∆ = 0, the negative energy levels do not mirror
the positive energy set. The N = 0 level is no longer at
zero energy but rather has been pushed to positive en-
ergy E0/2. The EN,+ energy is also larger than |EN,−|.
The black arrow between N = 0 and N = 1+ (which ap-
plies to the lowest line for positive µ) is longer by E0/2
than the arrows between the N = 1− and N = 0 levels
which is the first transition when µ is negative. Thus,
in Fig. 6(b), the first peak of the negative µ response
(purple) is lower in Ω than the corresponding positive µ
peak (black). The results for a gapped TI are shown in
frame (c) of Fig. 6 with the corresponding optical transi-
tions shown in Fig. 7(c). Again, an obvious asymmetry
is present between the ±µ regimes. The asymmetry is
now much larger than that shown in frame (b) for two
reasons: the finite gap adds asymmetry; the larger value

FIG. 6. (Color online) Longitudinal conductivity in (a) gap-
less graphene, and (b) a gapless and (c) gapped TI for positive
and negative µ. (a) For graphene, particle-hole symmetry en-
sures the ±µ results are identical. For a TI [(b)-(c)], the ±µ
results are different which emphasizes the asymmetry of the
LLs. The shading under the dashed blue curve is for empha-
sis. Note the missing peak in this case.

of chemical potential enhances it is well. An additional

Asymmetric shift only for zero modes

T. Kimura (Keio U) July 2015 10 / 15

http://arxiv.org/abs/1505.06660


What’s the role of dimensions and symmetry?

d = 3 + 1 chiral anomary

d = 2 + 1 parity anomary

T. Kimura (Keio U) July 2015 11 / 15



Classification of topological phases

Periodic table [Schnyder et al.] [Kitaev] (cf. [Altland–Zirnbauer] )

der and interactions on the Z2 topological insulator have been
less well studied in the 3D case than in the 2D case, there are
known to exist gapless surface modes in the topologically
nontrivial 3D phase which are robust against arbitrary strong
disorder as long as the latter does not alter the bulk topologi-
cal properties, in analogy to the quantum spin Hall effect
!QSHE" in two dimensions.12,21,24–27 These delocalized sur-
face states, whose Fermi surface encloses an odd number of
Dirac points, form a two-dimensional “Z2 topological
metal.”12,27,28

Recently, a series of experiments have been performed on
certain candidate materials for Z2 topological insulators. For
example, the QSH effect has been observed in HgTe/
!Hg,Cd"Te semiconductor quantum wells.29–33 Moreover, a
3D Z2 topological phase has been predicted for strained
HgTe and for bismuth-antimony alloys.12,33,34 Indeed, photo-
emission experiments on the latter system have revealed an
odd number of Dirac points inside the Fermi surface on the
!111" surface, thereby providing !indirect" evidence for the
existence of a nontrivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifica-
tion is for noninteracting systems of fermions. However,
since there is a gap, our results also apply to interacting
systems as long as the strength of the interactions is suffi-
ciently small as compared to the gap. As the majority of
previous works studied two-dimensional topological phases,

we shall be mostly concerned with the classification of 3D
systems, and only briefly comment on one- and two-
dimensional topological insulators in Sec. VIII. In the same
spirit as in the treatments of Z2 topological insulators, we
impose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states can be
transmuted into each other, without crossing a quantum
phase transition, by a continuous deformation respecting the
discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from the
presence of random impurity potentials, the natural discrete
symmetries we should think of would be those considered in
the context of disordered systems.36 It is at this stage that we
realize that the existence of the classification of random
Hamiltonians, familiar from the theory of random matrices,
will become very useful for this purpose.

Specifically, following Zirnbauer37 and Altland and
Zirnbauer38 !AZ", all possible symmetry classes of random
matrices, which can be interpreted as Hamiltonians of some
noninteracting fermionic system, can be systematically enu-
merated: there are ten symmetry classes in total. !For a sum-
mary, see Table I." The basic idea as to why there are pre-
cisely ten is easy to understand. Roughly, the only generic
symmetries relevant for any system are TRS and charge con-
jugation or particle-hole symmetry !PHS". Both can be rep-
resented by antiunitary operators on the Hilbert space on
which the single-particle Hamiltonian !a matrix" acts, and

TABLE I. Ten symmetry classes of single-particle Hamiltonians classified in terms of the presence or
absence of time-reversal symmetry !TRS" and particle-hole symmetry !PHS", as well as “sublattice” !or
“chiral”" symmetry !SLS" !Refs. 37 and 38". In the table, the absence of symmetries is denoted by “0.” The
presence of these symmetries is denoted by either “+1” or “−1,” depending on whether the !antiunitary"
operator implementing the symmetry at the level of the single-particle Hamiltonian squares to “+1” or “−1”
!see text". #The index !1 equals "c in Eq. !1b"; here #c= +1 and −1 for TRS and PHS, respectively.$ For the
first six entries of the table !which can be realized in nonsuperconducting systems", TRS= +1 when the SU!2"
spin is an integer #called TRS !even" in the text$ and TRS=−1 when it is a half-integer #called TRS !odd" in
the text$. For the last four entries, the superconductor “Bogoliubov–de Gennes” !BdG" symmetry classes D,
C, DIII, and CI, the Hamiltonian preserves SU!2" spin-1/2 rotation symmetry when PHS=−1 #called PHS
!singlet" in the text$, while it does not preserve SU!2" when PHS= +1 #called PHS !triplet" in the text$. The
last three columns list all topologically non-trivial quantum ground states as a function of symmetry class and
spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground states is partitioned
into topological sectors labeled by an integer or a Z2 quantity, respectively.

TRS PHS SLS d=1 d=2 d=3

Standard A !unitary" 0 0 0 - Z -
!Wigner-Dyson" AI !orthogonal" +1 0 0 - - -

AII !symplectic" −1 0 0 - Z2 Z2

Chiral AIII !chiral unitary" 0 0 1 Z - Z
!sublattice" BDI !chiral orthogonal" +1 +1 1 Z - -

CII !chiral symplectic" −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 - - Z

SCHNYDER et al. PHYSICAL REVIEW B 78, 195125 !2008"

195125-2

Dimensions: d = 0, 1, 2, 3, . . .

Symmetry: T/CP, C, chiral

additional: crystal structure
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Symmetry-Protected Topological (SPT) phase

Topological crystalline insulator [Liu–Duan–Fu]

Ab initio calculations show that the conduction (valence) band of PbTe predominantly comes
from cation Pb (anionTe) orbitals, as expected for an ionic insulatormade of Pb2þ and Te2" in the
atomic limit. In contrast, SnTe displays an anomalous band character: In a small region of the
Brillouin zone around L points, the conduction (valence) band comes from anion Te (cation Sn)
orbitals. This inverted bandordering of SnTe, distinct froman ionic insulator, is responsible for the
experimentally observed decrease (increase) of band gap under tensile strain (pressure), which
increases (decreases) the lattice constant toward (away from) the atomic limit. Putting together the
results of the low-energy theory, topological band theory, and ab initio calculation, Hsieh et al.
(10) predicted that SnTe is a TCI, whereas PbTe is not.

2.3. Topological Crystalline Insulator Surface States

The nonzero mirror Chern number in the SnTe class of TCIs guarantees the existence of topo-
logical surface states on crystal faces that are symmetric with respect to the (110) mirror planes.
Such crystal faces have a Miller index (hhk). [The cubic symmetry of SnTe dictates that the
situation is the same for (khh) and (hkh) faces.] Three common surface terminations of IV–VI
semiconductors are (001), (111), and (110) (see Figure 1a), which all satisfy this condition. In-
terestingly, depending on the surface orientation, there are two types of TCI surface states, with
qualitatively different electronic properties, as schematically shown in Figure 1b.

The first type ofTCI surface states exists on the (001) and (110) surface,where apair ofL points
are projected onto the same TRIMs on the surface. For the (001) surface, L1 and L2 are projected
ontoX1, andL3 andL4 are projected ontoX2. In this case, the twomassless surfaceDirac fermions
resulting from band inversions at L1 and L2 (L3 and L4) hybridize with each other at the surface
and create unprecedented surface states atX1 ðX2Þwith a double-Dirac-cone band structure. The
essential properties of these surface states are captured by the following minimal k × p model at
a given X point (41):
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Figure 1

Topological crystalline insulator (TCI). (a) High-symmetry points in the 3D Brillouin zone and in the projected surface Brillouin zone for
three different surfaces of the rock-salt crystal structure. Adapted from Reference 41; © 2013 by the American Physical Society. (b)
Locations of the Dirac cones in the (111) and (001) surface Brillouin zones. (c) Result of the tight-binding calculations for the dispersion of
the (001) double-Dirac-cone surface state. Adapted from Reference 41; © 2013 by the American Physical Society.
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FIG. 3. (Color online) k · p band structure for the (001) surface
states. A pair of low-energy Dirac cones, located at !̄1 and !̄2 on
the line X̄"̄, is formed by the interaction between two high-energy
Dirac bands centered at X̄. k · p parameters are obtained by fitting
with ab initio results (shown by red dots) on SnTe taken from Ref. 7:
vx = 2.4 eV Å, vy = 1.3 eV Å, m = 70 meV, and δ = 26 meV. The
constant-energy contour evolves rapidly with increasing energy from
the Dirac point, changing from two disconnected electron pockets to a
large electron pocket and a small hole pocket via a Lifshitz transition.
At this transition point, a saddle point S̄ on the line X̄M̄ leads to a
Van Hove singularity in density of states at energy ES = δ.

fact that $(k) vanishes along the mirror-symmetric line "̄X̄1
is a consequence of the unique electronic topology of the
TCI protected by mirror symmetry. As can be seen from
(2) and (3), the two low-energy bands ±EL have opposite
Mx mirror eigenvalues on the ky line X̄1"̄, but identical
My mirror eigenvalues on the kx line X̄1M̄ . As a result,
hybridization is strictly forbidden on X̄1"̄, but allowed on
X̄1M̄ . The presence of such a protected band crossing on
X̄1"̄, but not elsewhere, leads to a pair of zero-energy Dirac
points !̄1,2 located symmetrically away from X̄1 at momenta
!̄1,2 = (0, ±

√
m2 + δ2/vy). By linearizing the band structure

near each !̄, we obtain the two-component massless Dirac
fermion at low energy7

H!̄1
(δk) = ṽxδkxσy − vyδkyσx, (5)

where δk ≡ k − !̄1 and the Dirac velocity along "̄X̄1 is
reduced from vx : ṽx = vxδ/

√
m2 + δ2.

Our k · p theory thus demonstrates how these low-energy
Dirac cones in type-II surfaces are derived from parent
Dirac fermions at high energy. By doing so, it also captures
essential high-energy features of the (001) surface states that
are previously found in ab initio calculations.7 As shown
in Fig. 3, the band dispersion and constant energy contours
evolve rapidly and undergo a change in topology (i.e., Lifshitz
transition) with increasing energy away from the Dirac point.
For |E| < δ, the Fermi surface consists of two disconnected
Dirac pockets outside X̄. At |E| = δ, the two pockets touch
each other at two saddle points S̄1 and S̄2 located at the
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FIG. 4. (Color online) Band structure of the SnTe (110) surface,
from our ab initio calculations. The inset shows the surface Brillouin
zone. A pair of Dirac cones is present on the line X̄-"̄-X̄, but absent
along other high-symmetry lines.

momentum (±m/vx,0), resulting in a Van Hove singularity
in the density of states, shown in Fig. 3. The effective mass
tensor at the saddle point is given by by mxx = δ/v2

x and
myy = −m2/(δ · v2

y). For |E| > δ, the Fermi surface changes
into two pockets of different carrier types, both centered at X̄.

As shown in Fig. 3, our k · p band structure (4) fits well with
the previous ab initio calculation of the SnTe (001) surface in
a wide energy range.7 Further improvement can be made by
incorporating additional intervalley terms that are linear in k
into our k · p Hamiltonian (4). This leads to a sophisticated
k · p theory with seven independent parameters, which is
closely related to a recent study by Fang et al.37 Since these ad-
ditional terms do not affect any essential aspect of the (001) sur-
face band structure, they are not considered in the main text.38

(110) surface. We end by briefly discussing another type-II
surface, (110). In this case, L1 and L2 are projected to X̄, and
L3 and L4 are projected to R̄. Bulk-boundary correspondence
based on the electronic topology of TCIs predicts the existence
of a pair of counterpropagating states with opposite mirror
eigenvalues on "̄X̄.7 This is confirmed by our ab initio
calculation33 for SnTe (110) shown in Fig. 4: A pair of
Dirac cones is found on the line X̄-"̄-X̄, but not along other
high-symmetry lines. Since X̄ on the (110) surface has the
same symmetry as X̄1 on the (001) surface including two
mirror planes plus a twofold axis, our k · p theory (2) and
(3) applies equally well to the (110) surface band structure
near X̄.

Note added: Recently, we learned of a related work on the
(001) surface states of TCI.39
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Symmetry: x & y-reflection, C2 rotation

Q. Overlap? Ginsparg–Wilson relation?
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Reflection symmetry

x-reflection operator:

RxD(x, y, z)Rx = D(−x, y, z)

Invariant surface:

RxD(x, y, z)Rx = D(x, y, z) at x = 0

Ginsparg–Wilson relation

Chiral operator: Γx = iγxRx
ΓxD +DΓx = aDΓxD

Topological class: Z2 (parity) −→ Z (chiral)
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Summary

Mass = Band gap

Domain-wall & overlap on the surface

Ginsparg–Wilson relation and its consequence

particle-hole asymmetry

Ginsparg–Wilson formalism for the additional symmetry

reflection symmetry and classification Z2 → Z

Many possible applications

index thm, admissibility
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What is the topological phase?

(Thermodynamic) phases bulk property

ex.) H2O : ice/water/vapor

Phase transition : free energy singularity

Topological phases boundary property

ex.) QHE : σH = ν
e2

h
, ν ∈ Z (topological num.)

Phase transition : topology change
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What is the topological phase?

ex.) Quantum Hall state

Quantum Hall effect

σxx = 0 , σxy = ν
e2

h
(ν ∈ Z)
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What is the topological phase?

What is the effective field theory for QHE?

Dimension d = 2 + 1

Parity broken (due to B)

Chern–Simons theory

SCS =
k

4π

∫
AdA

Current: Jµ =
δSCS

δAµ
=

k

2π
εµνρ∂

νAρ Jµ =
k

2π
εµνE

ν

σxx = 0 , σxy =
k

2π

(
e2

~

)
= k

e2

h
(k ∈ Z)
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What is the topological phase?

Topological terms in QFT

1

32π2

∫
d4x θ(x) εµνρσ F

µνF ρσ

1

192π

∫
d3x εµνρ Tr

[
ωµ∂µωρ +

2

3
ωµωνωρ

]
1

1534π2

∫
d4x θ(x) εµνρσ R

α µν
β Rβ ρσ

α

d = 3 TI

d = 2 TSC

d = 3 TSC
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Wavefunction topology

ex.) Massive Dirac fermion in d = 1

H(k) =

(
m− ik

m+ ik

)

Topological #: the base (k-space) to the Hilbert space

ν =
1

2πi

∫ ∞
−∞

dkAk =
1

2
sgn(m) w/ Ak = ψ†∂kψ

Topology change: ∆ν = ±1 at m = 0
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Wavefunction topology

ex.) Wilson fermion in d = 4

D(k) = m+

4∑
µ=1

iγµ sin kµ + r

4∑
µ=1

(1− cos kµ)

Topological #: the base (Brillouin zone) to the Hilbert space

ν =

∫
BZ

trF ∧ F w/ A = ψ†dψ

Topology change:

∆ν = +1,−4,+6,−4,+1 at m = 0,−2r,−4r,−6r,−8r
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Wavefunction topology

Topological #: the base to the Hilbert space

Massless point topology change

cf.) Atiyah–Bott–Shapiro, ADHM/Nahm, K-theory, etc.
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