Domain-wall/overlap, and topological insulators

Taro Kimura

Department of Physics, Keio University

collaboration with T. Morimoto (RIKEN)

T. Kimura (Keio U)

July 2015 1 / 15

• Graphene

• Graphene

Bismuth

Bismuth

Bismuth

Mass = Band gap

• $\operatorname{Bi}_{1-x} \operatorname{Sb}_x$

• $\operatorname{Bi}_{1-x} \operatorname{Sb}_x$

•
$$\operatorname{Bi}_{1-x} \operatorname{Sb}_x$$

• $\operatorname{Bi}_{1-x} \operatorname{Sb}_x$

• Topological number

$$\nu = \frac{1}{4\pi^2} \int \operatorname{Tr}\left(\mathcal{A}d\mathcal{A} + \frac{2}{3}\mathcal{A}^3\right) \qquad \mathcal{A}: \text{ Berry connection}$$

Topological number

$$\nu = \frac{1}{4\pi^2} \int \operatorname{Tr}\left(\mathcal{A}d\mathcal{A} + \frac{2}{3}\mathcal{A}^3\right) \qquad \mathcal{A}: \text{ Berry connection}$$

Topological number

$$\nu = \frac{1}{4\pi^2} \int \operatorname{Tr}\left(\mathcal{A}d\mathcal{A} + \frac{2}{3}\mathcal{A}^3\right) \qquad \mathcal{A}: \text{ Berry connection}$$

Topological number

$$\nu = \frac{1}{4\pi^2} \int \operatorname{Tr}\left(\mathcal{A}d\mathcal{A} + \frac{2}{3}\mathcal{A}^3\right) \qquad \mathcal{A}: \text{ Berry connection}$$

TI surface state = domain-wall fermion

Topological insulator

• BiSb, BiSe [Hsieh et al.] [Zhang et al.]

Topological insulator

• BiSb, BiSe [Hsieh et al.] [Zhang et al.]

• Effective theory for (massless) surface states

• Effective theory for (massless) surface states

• Effective theory for (massless) surface states

• Subtracting the bulk contribution [Neuberger]

Overlap formula

$$\mathcal{Z}_{\mathsf{eff}} = \frac{\det D_{\mathsf{open}}}{\det D_{\mathsf{period}}} = \det D_{\mathsf{eff}}$$

Overlap properties

Ginsparg–Wilson relation

$$\gamma_5 D + D\gamma_5 = aD\gamma_5 D$$

Overlap properties

Ginsparg–Wilson relation

$$\gamma_5 D + D\gamma_5 = aD\gamma_5 D$$

• Discretization effect (finite *a*)

$$\gamma_5 D + D\Gamma_5 = 0 \quad w/ \quad \Gamma_5 = \gamma_5 (1 - aD)$$

 \longrightarrow particle-antiparticle (hole) asymmetry (d = 3 + 1) [Lüscher]

$$\psi \rightarrow e^{i\theta\Gamma_5}\psi, \qquad \bar{\psi} \rightarrow \bar{\psi}e^{i\theta\gamma_5}$$

Another expression

$$D + D^{\dagger} = aD^{\dagger}D \qquad \left(\gamma_5 D\gamma_5 = D^{\dagger}\right)$$

• A solution:
$$D=\frac{1}{a}\left(1-V\right)$$
 , $\quad V^{\dagger}=V^{-1}$

Another expression

$$D + D^{\dagger} = aD^{\dagger}D \qquad \left(\gamma_5 D\gamma_5 = D^{\dagger}\right)$$

• A solution:
$$D = \frac{1}{a} (1 - V)$$
, $V^{\dagger} = V^{-1}$

• Particle-hole asymmetry in d = 2 + 1

[Bietenholz-Nishimura] [Kikukawa-Neuberger]

$$\begin{split} \psi \ \to \ i \, \mathcal{R} \, V \, \psi \,, \quad \bar{\psi} \ \to \ i \, \bar{\psi} \, \mathcal{R} \\ \text{or} \quad \psi \ \to \ i \, \mathcal{R} \, \psi \,, \quad \bar{\psi} \ \to \ i \, \bar{\psi} \, V \, \mathcal{R} \end{split}$$
• \mathcal{R} : reflection operator $(x, y, z) \ \to \ (-x, -y, -z) \\ \mathcal{R} \, D \, \mathcal{R} = D^{\dagger} \end{split}$

How to detect it?

• Magneto-optical conductivity

How to detect it?

• Magneto-optical conductivity [Tabert-Carbotte]

How to detect it?

• Magneto-optical conductivity [Tabert-Carbotte]

Asymmetric shift only for zero modes

• What's the role of dimensions and symmetry?

- $d = 3 + 1 \longrightarrow$ chiral anomary
- $d = 2 + 1 \longrightarrow$ parity anomary

Classification of topological phases

• Periodic table [Schnyder et al.] [Kitaev] (Cf. [Altland–Zirnbauer])

		TRS	PHS	SLS	d=1	<i>d</i> =2	<i>d</i> =3
Standard	A (unitary)	0	0	0	-	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2
Chiral	AIII (chiral unitary)	0	0	1	Z	-	Z
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	Z	-	-
	CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2
BdG	D	0	+1	0	\mathbb{Z}_2	Z	-
	С	0	-1	0	-	Z	-
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z
	CI	+1	-1	1	-	-	Ζ

• Dimensions: $d = 0, 1, 2, 3, \ldots$

Classification of topological phases

• Periodic table [Schnyder et al.] [Kitaev] (cf. [Altland–Zirnbauer])

		TRS	PHS	SLS	<i>d</i> =1	<i>d</i> =2	<i>d</i> =3
Standard	A (unitary)	0	0	0	-	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2
Chiral	AIII (chiral unitary)	0	0	1	Z	-	Z
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	Z	-	-
	CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2
BdG	D	0	+1	0	\mathbb{Z}_2	Z	-
	С	0	-1	0	-	Z	-
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z
	CI	+1	-1	1	-	-	Z

• Dimensions: d = 0, 1, 2, 3, ...

• Symmetry: T/CP, C, chiral \longrightarrow additional: crystal structure

Symmetry-Protected Topological (SPT) phase

• Topological crystalline insulator [Liu-Duan-Fu]

• Symmetry: x & y-reflection, C_2 rotation

• Q. Overlap? Ginsparg–Wilson relation?

Reflection symmetry

• *x*-reflection operator:

$$\mathcal{R}_x D(x, y, z) \mathcal{R}_x = D(-x, y, z)$$

Invariant surface:

$$\mathcal{R}_x D(x,y,z) \mathcal{R}_x = D(x,y,z)$$
 at $x = 0$

Ginsparg–Wilson relation

• Chiral operator: $\Gamma_x = i \gamma_x \mathcal{R}_x$

$$\rightarrow$$
 $\Gamma_x D + D\Gamma_x = aD\Gamma_x D$

• Topological class: \mathbb{Z}_2 (parity) $\longrightarrow \mathbb{Z}$ (chiral)

Summary

- Mass = Band gap
 - → Domain-wall & overlap on the surface
- Ginsparg–Wilson relation and its consequence

→ particle-hole asymmetry

• Ginsparg–Wilson formalism for the additional symmetry

ightarrow reflection symmetry and classification $\mathbb{Z}_2 \
ightarrow \mathbb{Z}$

• Many possible applications

 \longrightarrow index thm, admissibility

(Thermodynamic) phases ----- bulk property

- ex.) H₂O : ice/water/vapor
- Phase transition : free energy singularity

• ex.) QHE :
$$\sigma_{\mathsf{H}} =
u \frac{e^2}{h}$$
, $u \in \mathbb{Z}$ (topological num.)

• Phase transition : topology change

• ex.) Quantum Hall state

Quantum Hall effect

$$\sigma_{xx} = 0, \quad \sigma_{xy} = \nu \frac{e^2}{h} \quad (\nu \in \mathbb{Z})$$

- What is the effective field theory for QHE?
 - Dimension d = 2 + 1
 - Parity broken (due to *B*)

Chern-Simons theory

$$S_{\mathsf{CS}} = \frac{k}{4\pi} \int A dA$$

• Current:
$$J_{\mu} = \frac{\delta S_{\text{CS}}}{\delta A^{\mu}} = \frac{k}{2\pi} \epsilon_{\mu\nu\rho} \partial^{\nu} A^{\rho} \longrightarrow J_{\mu} = \frac{k}{2\pi} \epsilon_{\mu\nu} E^{\nu}$$

 $\sigma_{xx} = 0, \quad \sigma_{xy} = \frac{k}{2\pi} \left(\frac{e^2}{\hbar}\right) = k \frac{e^2}{\hbar} \quad (k \in \mathbb{Z})$

T. Kimura (Keio U)

July 2015 19 / 15

• Topological terms in QFT

$$\frac{1}{32\pi^2} \int d^4 x \,\theta(x) \,\epsilon_{\mu\nu\rho\sigma} \,F^{\mu\nu}F^{\rho\sigma} \longrightarrow d = 3 \,\mathrm{TI}$$

$$\frac{1}{192\pi} \int d^3 x \,\epsilon_{\mu\nu\rho} \,\mathrm{Tr} \left[\omega^{\mu}\partial^{\mu}\omega^{\rho} + \frac{2}{3}\omega^{\mu}\omega^{\nu}\omega^{\rho} \right] \longrightarrow d = 2 \,\mathrm{TSC}$$

$$\frac{1}{1534\pi^2} \int d^4 x \,\theta(x) \,\epsilon_{\mu\nu\rho\sigma} \,R^{\alpha \ \mu\nu}_{\ \beta}R^{\beta \ \rho\sigma}_{\ \alpha} \longrightarrow d = 3 \,\mathrm{TSC}$$

July 2015 20 / 15

Wavefunction topology

• ex.) Massive Dirac fermion in d = 1

$$\mathcal{H}(k) = \left(\begin{array}{c} m - ik\\ m + ik \end{array}\right)$$

• Topological #: the base (k-space) to the Hilbert space

$$\nu = \frac{1}{2\pi i} \int_{-\infty}^{\infty} dk \,\mathcal{A}_k = \frac{1}{2} \operatorname{sgn}(m) \qquad \mathsf{w}/\quad \mathcal{A}_k = \psi^{\dagger} \partial_k \psi$$

• Topology change: $\Delta \nu = \pm 1$ at m = 0

T. Kimura (Keio U)

July 2015 21 / 15

Wavefunction topology

• ex.) Wilson fermion in d = 4

$$D(k) = m + \sum_{\mu=1}^{4} i\gamma_{\mu} \sin k_{\mu} + r \sum_{\mu=1}^{4} (1 - \cos k_{\mu})$$

• Topological #: the base (Brillouin zone) to the Hilbert space

$$\nu = \int_{\mathsf{BZ}} \operatorname{tr} \mathcal{F} \wedge \mathcal{F} \qquad \mathsf{w}/\qquad \mathcal{A} = \psi^{\dagger} d\psi$$

Topology change:

 $\Delta\nu = +1, -4, +6, -4, +1 \quad \text{at} \quad m = 0, -2r, -4r, -6r, -8r$

Wavefunction topology

- Topological #: the base to the Hilbert space
- Massless point ---> topology change

• cf.) Atiyah-Bott-Shapiro, ADHM/Nahm, K-theory, etc.