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Introduction and motivations

One of the main features of SU(N) non-abelian gauge theories is the existence of a
deconfinement phase transition, i.e. a temperature above which gluons are “deconfined”.
Our goal is to study the thermodynamics of pure gauge theories in the confining phase
when approaching the deconfinement transition from below.

In the confining phase the only degrees of freedom of the theory without quarks are the
glueballs: looking at the thermodynamics in the confining phase we have a tool to
explore the glueball spectrum of the theory.
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Introduction and motivations

Our main result is that the thermodynamics of the model can only be described assuming
a string-like description of glueballs (and thus a Hagedorn spectrum). The fine details of
the spectrum spectrum agree remarkably well with the predictions of the Nambu-Goto
effective string. This turns out to be an highly non trivial test of the effective string
picture of confinement.

This analysis was performed in the 3+1 dimensional SU(3) model in the pioneering work
of Meyer1. Now, using high precision lattice data for SU(3)2 and a new set of SU(2) data
on (3+1) dimensions3, we are in the position to refine the effective string analysis and
test its predictive power. The present results confirm our previous findings4 for (2+1)
dimensional SU(N) theories (with N = 2, 3, 4, 5, 6).

1H. Meyer, High-Precision Thermodynamics and Hagedorn Density of States, 2009
2Sz. Borsanyi et al., Precision SU(3) lattice thermodynamics for a large temperature range, 2012
3M. Caselle, A. Nada, M. Panero, Hagedorn spectrum and thermodynamics of SU(N) Yang-Mills theories,

arXiv:1505.01106
4M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions I - The confining

phase, 2011
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Thermodynamic quantities

On a Nt ×N3
s lattice the volume is V = (aNs )3 (where a is the lattice spacing), while the

temperature is determined by the inverse of the temporal extent (with periodic boundary
conditions): T = (aNt)−1.

The thermodynamic quantities taken into account will be:

I the pressure p, that in the thermodynamic limit (i.e. for large and homogenous
systems) can be written as

p ' T

V
logZ(T ,V )

I the trace of the energy-momentum tensor ∆, that in units of T 4 is

∆

T 4
=
ε− 3p

T 4
= T

∂

∂T

( p

T 4

)
.

Energy density ε = ∆ + 3p and entropy density s = ε+p
T

= ∆+4p
T

can be easily calculated.
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Thermodynamics on the lattice

The pressure can be estimated by the means of the so-called “integral method”1:

p(T ) ' T

V
logZ(T ,V ) =

1

a4

1

Nt N3
s

∫ β(T )

0

dβ′
∂ logZ

∂β′
.

It can be written (relative to its T = 0 vacuum contribution) as

p(T )

T 4
= −Nt

4

∫ β

0

dβ′ [3(Pσ + Pτ )− 6P0]

where Pσ and Pτ are the expectation values of spacelike and timelike plaquettes
respectively and P0 is the expectation value at zero T .

The trace of energy-momentum tensor is simply

∆(T )

T 4
= T

∂

∂T

( p

T 4

)
= −Nt

4T
∂β

∂T
[3(Pσ + Pτ )− 6P0] .

1J. Engels et al., Nonperturbative thermodynamics of SU(N) gauge theories, 1990
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Ideal glueball gas

The behaviour of the system is supposed to be dominated by a gas of non-interacting
glueballs. The prediction of an ideal relativistic Bose gas can be used to describe the
thermodynamics of such gas. Its partition function for 3 spatial dimensions is

logZ = (2J + 1)
2V

T

(
m2

2π

)2 ∞∑
k=1

(
T

km

)2

K2

(
k
m

T

)
where m is the mass of the glueball, J is its spin and K2 is the modified Bessel function
of the second kind of index 2.
Observables such as ∆ and p thus can be easily derived:

p =
T

V
logZ = 2(2J + 1)

(
m2

2π

)2 ∞∑
k=1

(
T

km

)2

K2

(
k
m

T

)

∆ = ε− 3p = 2(2J + 1)

(
m2

2π

)2 ∞∑
k=1

(
T

km

)
K1

(
k
m

T

)
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Test with the SU(2) model

The SU(2) model is a perfect laboratory to test these results.

I It is easy to simulate: very precise results may be obtained with a reasonable
amount of computing power.

I The masses of several states of the glueball spectrum are known with remarkable
accuracy.

I The deconfinement transition is of second order and thus it is expected to coincide
with the Hagedorn temperature, i.e. Tc ≡ TH .

I The infrared physics of the model is very similar to that of the SU(3) theory, with
one important difference: the gauge group is real and thus only C = 1 glueballs
exist. Thus the glueball exponential spectrum contains only half of the states with
respect to SU(3).
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Scale setting

The SU(2) scale setting is fixed by calculating the string tension via the computation of
Polyakov loop correlators with the multilevel algorithm.

The range of the parameter β which has been considered (β ∈ [2.27, 2.6]) covers
approximately the temperature region analyzed in the finite temperature simulations.

The string tension is obtained with a two-parameter fit of

V = − 1

Nt
log〈PP〉

with the first order effective string prediction for the potential

V = σr + V0 −
π

12r
.

Higher order effective string corrections turned out to be negligible within the precision of
our data.
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Scale setting

The values of the string tension are interpolated by a fit to

log(σa2) =

npar−1∑
j=0

aj (β − β0)j with β0 = 2.35 and npar = 4

which yields a χ2
red of 0.01. It is presented below along with older data1.
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1B. Lucini, M. Teper, U. Wenger, The high temperature phase transition in SU(N) gauge theories, 2003
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Lattice setup for finite temperature simulations

N4
s at T = 0 N3

s × Nt at T 6= 0 nβ β-range nconf

324 603 × 5 17 [2.25, 2.3725] 1.5× 105

404 723 × 6 25 [2.3059, 2.431] 1.5× 105

404 723 × 8 12 [2.439, 2.5124] 105

The first two columns show the lattice sizes (in units of the lattice spacing a) for the T = 0 and
finite-temperature simulations, respectively. In the third column, nβ denotes the number of
β-values simulated within the β-range indicated in the fourth column. Finally, in the fifth column
we report the cardinality nconf of the configuration set for the T = 0 and finite-T simulations.
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SU(2): trace of energy-momentum tensor
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Despite the small values of Nt the data scale reasonably well.
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SU(2): trace of energy-momentum tensor
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Plot of the contribution of the lowest glueball state 0++ compared with the data.
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SU(2): trace of energy-momentum tensor
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The contribution of all SU(2) glueball states with mass m < 2m0++ .
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A few important observations

I Usually the thermodynamics of the system is saturated by the first state (or, in some
cases, the few lowest states) of the spectrum due to the exponential dependence on
the mass.

I The large gap between the m0++ and the m < 2m0++ curves and those between
them and the data show that the spectrum must be of the Hagedorn type, i.e. that
the number of states increases exponentially with the mass.

I A Hagedorn spectrum is typically the signature of a string-like origin of the spectrum.

I The thermal behaviour of the model in the confining phase is thus a perfect
laboratory to study the nature of this spectrum and of the underlying string model.

I Effective string theory suggests that, with a very good approximation, this model
should be a Nambu-Goto string.

Let us see the consequences of this assumption.
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Glueballs as rings of glue

A closed string model for the full glueball spectrum that follows the original work of
Isgur and Paton12 can be introduced to account for the values of thermodynamic
quantities near the transition. In the closed-string approach glueballs are described in the
limit of large masses as “rings of glue”, that is closed tubes of flux modelled by closed
bosonic string states.

The mass spectrum of a closed strings gas in D spacetime dimensions is given by

m2 = 4πσ

(
nL + nR −

D − 2

12

)
where nL = nR = n are the total contribution of left- and right-moving phonons on the
string.

1N. Isgur and J. Paton, A Flux Tube Model for Hadrons in QCD, 1985
2R. Johnson and M. Teper, String models of glueballs and the spectrum of SU(N) gauge theories in

(2+1)-dimensions, 2002
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Every glueball state corresponds to a given phonon configuration, but associated to each
fixed n there are multiple different states whose number is given by π(n), i.e. the
partitions of n.

The density of states ρ(n) is expressed through the square of π(n)

ρ(n) = π(nL)π(nR ) = π(n)2 ' 12 (D − 2)
D−1

2

(
1

24n

) D+1
2

exp

(
2π

√
2(D − 2)n

3

)
.
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Spectral density

The spectral density as a function of the mass (i.e. ρ̂(m)dm = ρ(n)dn) can be expressed
as

ρ̂(m) =
(D − 2)D−1

m

(
πTH

3m

)D−1

em/TH

where the Hagedorn temperature1 is defined as

TH =

√
3σ

π(D − 2)
.

Finally, the spectral density is used to account for all the states above the mass threshold
2m0++ :

∆ =
∑

m<2m0++

(2J + 1)∆(m,T ) +

∫ ∞
2m0++

dm ρ̂(m) ∆(m,T )

1R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965)
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SU(2): trace of energy-momentum tensor
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SU(2) vs. SU(3)

The SU(3) case was studied for the first time in 2009 in the pioneering work of Meyer1.
Now, using high precision lattice data2 we are in the position to test the Hagedorn
behaviour in a very stringent way.

With respect to SU(2)

I SU(3) has complex representations, thus glueballs have both C = +1/− 1 and the
spectrum contains approximately twice the number of glueballs than in the SU(2)
case.

I SU(3) has a first order deconfining transition, so Tc < TH .

In the effective string framework we can safely fix TH at the expected Nambu-Goto value,
i.e. TH =

√
3σ/2π ' 0.691

√
σ. Lorentz invariance of the effective string tells us that

this should be a very good approximation of the exact result.

The relation between TH and Tc is:

TH

Tc
= 1.098

1H. Meyer, High-Precision Thermodynamics and Hagedorn Density of States, 2009
2Sz. Borsanyi et al., Precision SU(3) lattice thermodynamics for a large temperature range, 2012
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SU(3): trace of energy-momentum tensor
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Also in this case the m < 2m0++ sector of the glueball spectrum is not enough to fit the
behaviour of ∆/T 4, while including the whole Hagedorn spectrum we find again a
remarkable agreement (with no free parameter!)
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SU(2) vs. SU(3)
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The doubling of the Hagedorn spectrum is clearly visible in the data!
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Conclusions

I The thermodynamics of SU(2) and SU(3) Yang-Mills theories in D = (3 + 1) is well
described by a gas of non-interacting glueballs.

I The agreement is obtained only assuming a Hagedorn spectrum for the glueballs.

I The fine details of the spectrum, in particular the Hagedorn temperature, agree well
with the predictions of the Nambu-Goto effective string.

I The results agree with previous findings1 in D = (2 + 1) SU(N) Yang Mills theories
with N = 2, 3, 4, 5, 6.

1M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions I - The confining
phase, 2011
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Lattice regularization

For SU(N) pure gauge theories on the lattice the dynamics is described by the standard
Wilson action

SW = β
∑

p=sp,tp

(1− 1

N
ReTrUp)

where UP is the product of four Uµ SU(N) variables on the space-like or time-like
plaquette P and β = 2N

g2 .

The partition function is

Z =

∫ ∏
x,µ

dUµ(x)e−SW

the expectation value of an observable A

〈A〉 =
1

Z

∫ ∏
n,µ

dUµ(n)A(Uµ(n)) e−SW
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Scale setting

β rmin/a σa2 aV0 χ2
red

2.27 2.889 0.157(8) 0.626(14) 0.6
2.30 2.889 0.131(4) 0.627(30) 0.1
2.32 3.922 0.115(6) 0.627(32) 2.3
2.35 3.922 0.095(3) 0.623(20) 0.2
2.37 3.922 0.083(3) 0.621(18) 1.0
2.40 4.942 0.068(1) 0.617(10) 1.4
2.42 4.942 0.0593(4) 0.613(5) 0.1
2.45 4.942 0.0482(2) 0.608(4) 0.4
2.47 4.942 0.0420(4) 0.604(5) 0.3
2.50 5.954 0.0341(2) 0.599(2) 0.1
2.55 6.963 0.0243(13) 0.587(11) 0.2
2.60 7.967 0.0175(16) 0.575(16) 0.3

Results for the string tension in units of the inverse squared lattice spacing at different values of
the Wilson action parameter β (first column). V was extracted from Polyakov loop correlators on
lattices of temporal extent Lt = 32a.
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Scale setting
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SU(N) Yang-Mills theories in (2 + 1) dimensions

The same picture is confirmed by a study performed a few years ago1 in (2+1)
dimensional SU(N) Yang-Mills theories for N = 2, 3, 4, 6. Also in this case:

I a Hagedorn spectrum was mandatory to fit the thermodynamic data

I there was a jump between the SU(2) and the SU(N > 2) case due to the doubling
of the spectrum

I we had to fix the Hagedorn temperature to the Nambu-Goto value which, due to the
different number of transverse degrees of freedom is different from the (3+1)
dimensional one: TH =

√
3σ/π ' 0.977

√
σ

1M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions I - The confining
phase, 2011
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SU(N) Yang-Mills theories in (2 + 1) dimensions
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SU(2) pressure
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