Solving the complex action problem of the finite density  $Z_3$  spin model with the density of states approach using FFA

Pascal Törek

in collaboration with Christof Gattringer

[C. Gattringer, P. Törek, PLB (2015), arXiv:1503.04947]

[Y. Mercado, C. Gattringer, P. Törek, PoS (2014), arXiv:1410.1645]

University of Graz

Kobe, 17<sup>th</sup> July 2015





### **Motivation**

- MC simulations of finite density field theories: Sign problem
- Possible way out: Density of states (DoS) method
- Challenges of DoS:
  - $\blacksquare$  Density  $\rho$  varies over many orders of magnitude
  - Finite- $\mu$  problem  $\rightarrow \rho$  integrated over highly oscillating factor
  - $\blacksquare$  Need precise determination of  $\rho$
- Based on idea of Wang-Landau algorithm:

[K. Langfeld, B. Lucini, A. Rago, PRD (2014)]

- Simulation in small intervals of density argument
- $\blacksquare$  Restricted MC in intervals  $\rightarrow$  determine  $\rho$
- Exponential error suppression
- Here: Further development of DoS method
  - $\rightarrow$  Functional Fit Approach (FFA)

Compare with dual approach (no sign problem) in  $Z_3$  spin model

### Action and partition sum

Effective action for Polyakov loop in QCD at  $g \to \infty$  and  $m \to \infty$  $\Rightarrow$  action of the Z<sub>3</sub> spin model at  $\mu \neq 0$  and  $T \neq 0$ 

$$S[P] = -\sum_{x \in \Lambda} \left[ \tau \sum_{\nu=1}^{3} \left( P_x P_{x+\hat{\nu}}^{\star} + c.c. \right) + \kappa e^{+\mu} P_x + \kappa e^{-\mu} P_x^{\star} \right]$$
$$\mu \leftarrow \mu \beta$$

with (Polyakov loops) 
$$P_x \in Z_3 = \left\{1, e^{i\,2\pi/3}, e^{-i\,2\pi/3}
ight\}$$
 and  $\Lambda$  a 3D lattice

Partition sum

$$Z = \sum_{\{P\}} e^{-S[P]} = \prod_{x \in \Lambda} \sum_{P_x} e^{-S[P]}$$

### Rewriting the action and the partition sum

 $N_0$ ,  $N_\pm$  is the number of spins equal to 1,  $e^{\pm i\,2\pi/3}$  and  $\Delta N=N_+-N_-\in [-V,V]$ 

$$S = -\tau \sum_{x,\nu} \left( P_x P_{x+\hat{\nu}}^{\star} + c.c. \right) - (3 N_0 - V) \kappa \cosh \mu - i \sqrt{3} \Delta N \kappa \sinh \mu$$
$$\equiv S_R + i S_I$$

Symmetry:  $P \rightarrow P^{\star} \Rightarrow \Delta N \rightarrow -\Delta N, N_0 \rightarrow N_0$ 

$$\Rightarrow Z = \sum_{\{P\}} e^{-S_R} \cos(S_I)$$

### The density of states

Definition of a weighted density of states: q net particle number

$$ho(q) = \sum_{\{P\}} e^{-S_R} \, \delta(q - \Delta N) \,, \; q \in [-V, V]$$

One can write the partition sum as (use  $\rho(q) = \rho(-q)$ )

$$Z = \rho(0) + 2\sum_{q=1}^{V} \rho(q) \cos\left(\sqrt{3} \, q \, \kappa \sinh \mu\right)$$

Observables can be computed with

$$\langle \mathcal{O} \rangle = rac{1}{Z} \sum_{q=-V}^{V} 
ho(q) e^{i\sqrt{3} q \kappa \sinh \mu} \mathcal{O}(q)$$

## Key features of the FFA

- Parametrize  $\rho$  as a piecewise constant function in q (exact!)
- Compute (q) with restricted MC simulations on small intervals for q
- Populate regions of low density with a auxiliary Boltzmann factor e<sup>-λq</sup>
- Parameters of ρ(q) are obtained by fitting the restricted MC data with a known function of λ

# Computation of $\rho(q)$ : functional fit approach (FFA)

• Parametrize the density of states  $\rho(q) = \rho(-q)$ 

$$ho(oldsymbol{q}) = \exp\left(-\sum_{i=0}^{|oldsymbol{q}|}oldsymbol{a}_i
ight) \quad,\quad oldsymbol{a}_i\in\mathbb{R}$$

■ Compute the coefficients *a<sub>i</sub>* using restricted expectation values

$$\langle\langle \Delta N \rangle \rangle_n(\lambda) = rac{1}{Z_n(\lambda)} \sum_{\{P\}} \theta_n(\Delta N) e^{-S_R - \lambda \Delta N} \Delta N, \ \theta_n(q) = \begin{cases} 1, |q-n| \leq 1 \\ 0, \ ext{otherwise} \end{cases}$$

**\blacksquare** Relation between MC data and the  $a_i$ 

$$\langle \langle \Delta N \rangle \rangle_n(\lambda) - n = \frac{e^{2\lambda - a_n - a_{n+1}} - 1}{e^{2\lambda - a_n - a_{n+1}} + e^{\lambda - a_n} + 1}$$

#### Restricted Monte Carlo

- Generate initial configurations P such that  $\Delta N[P] \in \{n-1, n, n+1\}$
- Modified Metropolis steps: If △N[P] ∉ {n-1, n, n+1} ⇒ reject trial configuration (additional rejection step)

#### Strategy for obtaining the coefficients $a_i$

- Restricted Monte Carlo for  $\lambda_i$ ,  $i = 1, ..., N_\lambda \Rightarrow \langle \langle \Delta N \rangle \rangle_n(\lambda_i) n$
- Fit the results ( $\chi^2$ -minimization)  $\Rightarrow$  recursive sequence:

$$n = 0$$
:  $a_1 \rightarrow n = 1$ :  $a_2 \rightarrow \cdots \rightarrow n = V - 1$ :  $a_V$ 

# Examples for $\langle \langle \Delta N \rangle \rangle_n(\lambda) - n$ : $V = 10^3$ $\tau = 0.16$ , $\kappa = 0.01$ , $\mu = 1.0$



# Examples for $\ln \rho$ : $V = 16^3$



# Fitting the density

Fit the density of states

$$\ln \rho(\mathbf{q}) = \sum_{n=1}^{N} c_n \, \mathbf{q}^{2n}$$

and compute the convolution integral numerically

$$Z = 2 \int_{0}^{V} dq \,\rho(q) \cos\left(\sqrt{3} \, q \,\kappa \,\sinh\mu\right)$$

ho(q) is a smooth function  $\Rightarrow$  fit is numerically less expensive than a drastic increase of the statistics

Not a fundamental ingredient of the DoS method

## Particle number density $\langle q \rangle$ : $V = 16^3$



Susceptibility  $\chi_q$ :  $V = 16^3$ 



Pascal Törek (University of Graz)

The Z<sub>3</sub> model with the DOS method

Kobe, 17<sup>th</sup> July 2015

### Conclusions

[C. Gattringer, P. Törek, PLB (2015), arXiv:1503.04947]

[Y. Mercado, C. Gattringer, P. Törek, PoS (2014), arXiv:1410.1645]

- We have developed further the density of states method using the Z<sub>3</sub> spin model
- The density of states has been calculated with restricted Monte Carlo updates and the functional fit approach (FFA)
- We compared our results with results obtained form a dual approach (free of complex action problem)
- At very large  $\mu\beta$  the rapidly oscillating factor  $\cos(\sqrt{3} q \kappa \sinh \mu\beta)$  limits the accuracy of DoS
- Future projects: FFA for the SU(3) spin model
  - $\Rightarrow$  Talk by Mario Giuliani