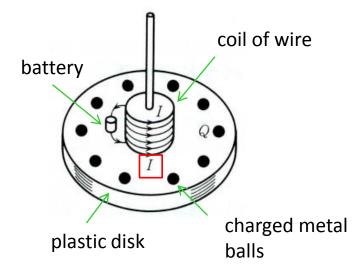
Backup Slides

[Backup slide A] A short review of the Feynman paradox

- 1. Initially, the disk is at rest.
- 2. Shut off the electric current at some moment.

Question

Does the disk begin to rotate, or does it continue to be at rest ?



Answer (A)

- Since an electric current is flowing through the coil, there is a magnetic flux along the axis.
- When the current is stopped, due to the electromagnetic induction, an electric field along the circumference of a circle is induced.
- Since the charged metal ball receives forces by this electric field, the disk begins to rotate !

Answer (B)

- Since the disk is initially at rest, its angular momentum is zero.
- Because of the conservation of angular momentum, the disk continue to be at rest !

2 totally conflicting answers !

Feynman's paradox

The paradox is resolved, if one takes account of the angular momentum carried by the electromagnetic field or potential generated by an electric current !

$$L_{e.m.} = \int \mathbf{r} \times \rho \, \mathbf{A} \, d^3 r$$

The answer (A) is correct !

[Backup Slides B] A simplified model of the Feynman paradox

- J.M. Aguirregabiria and A. Hernandez, Eur. J. Phys. 2 (1981) 168.
- A current *I* is flowing in a small (nearly pointlike) ring so that it has a magnetic moment

$$m = m e_z$$

• A charge +q is located at

$$r = (a, 0, 0)$$

This disk is initially at rest.
 The vector potential A at a point r created by the small ring is

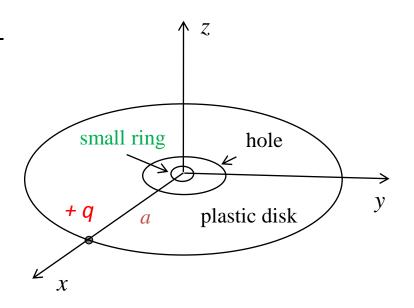
$$A(r) = \frac{\mu_0}{4\pi} \frac{m \times r}{r^3}$$

• Now, the magnetic moment is slowly decreased.

The induced electric fields $E = -\partial A / \partial t$ has a tangential component.

in m

$$E_{\phi} = -\frac{\mu_0}{4\pi} \frac{m}{a^2} \quad \text{at} \quad r = (a, 0, 0)$$
$$N_z = a \times q E_{\phi} = -\frac{\mu_0}{4\pi} \frac{q \dot{m}}{a}$$



When *m* becomes 0, the angular momentum of the disk is

$$L_z = \int N_z \, dt = -\frac{\mu_0 \, q}{4 \, \pi \, a} \int_m^0 \dot{m} \, dt = \frac{\mu_0 \, q \, m}{4 \, \pi \, a}$$

However, since the angular momentum of the disk is initially zero and if it must be conserved, the disk must be at rest.

basically the Feynman paradox

We must consider the angular momentum carried by the e.m. field (or potential)

$$L_{e.m.} = \frac{1}{c^2} \int \mathbf{r} \times \mathbf{S} \, dV = \frac{1}{\mu_0 c^2} \int \mathbf{r} \times (\mathbf{E} \times \mathbf{B}) \, dV$$

Using the identity

 $egin{array}{rll} C imes (
abla imes D) &+& D imes (
abla imes C) &=& (
abla \cdot C) \, D &+& (
abla \cdot D) \, C &+&
abla \cdot T \ r imes
abla \cdot T &=&
abla \cdot R \end{array}$

with

$$T_{ij} = (\boldsymbol{C} \cdot \boldsymbol{D}) \,\delta_{ij} - (C_i D_j + C_j D_i)$$

$$R_{ij} = \varepsilon_j^{kl} x_k T_{il}$$

we can write as

$$\begin{aligned} L_{e.m.} &= \varepsilon_0 \int \mathbf{r} \times \left[\mathbf{E} \times (\nabla \times \mathbf{A}) \right] dV \\ &= \int (\mathbf{r} \times \rho \mathbf{A}) \, dV \ + \varepsilon_0 \int \left[\left(\nabla \cdot \mathbf{A} \right) \mathbf{r} \times \mathbf{E} \right] dV \ + \varepsilon \int \nabla \cdot \mathbf{Q} \, dV \end{aligned}$$

with

$$Q_{ij} = \varepsilon_j^{kl} x_k \left[\left(\boldsymbol{E} \cdot \boldsymbol{A} \right) \delta_{li} - \left(E_l A_i + E_i A_l \right) \right]$$

The 2nd term vanishes, since A satisfies $\nabla \cdot A = 0$.

Using the Gauss law, the 3rd term also vanishes, since $Q \rightarrow 1/r^3$.

Then, noting that $\rho = q \, \delta^{(3)}(r-a)$, we get

$$L_{e.m.} = \int (\mathbf{r} \times \rho \mathbf{A}) \, dV = q \, \mathbf{r} \times \mathbf{A}(\mathbf{a})$$

That is

$$L_{e.m.} = \frac{\mu_0 q}{4 \pi a^3} \boldsymbol{a} \times (\boldsymbol{m} \times \boldsymbol{a}) = \frac{\mu_0 q m}{4 \pi a} \boldsymbol{e}_z$$

This exactly coincides with the previously-derived angular momentum of the plastic disk in the final state !

-- OAM carried by e.m. field or potential --