

Jianwei Qiu Brookhaven National Laboratory Stony Brook University

PHENIX Spinfest 2015

KEK Tokai campus, Tokai, Ibaraki, Japan, July 6 – 31, 2015

Summary of lecture three

- Event shape jettiness is a new powerful observable for studying the pattern of QCD (medium induced) radiation
- Heavy quarkonium production is still a very fascinating subject challenging our understanding of QCD bound states
- The need to have a heavy quark pair, heavy quarkonium production is an ideal place to study QCD power corrections, coherent multiple scatterings, ...
- TMD factorization of two-scale observables (one large, one small) provides a new and unique probe to "see" the confined motion: the large scale to pin down the parton d.o.f. while the small scale to probe the nonperturbative structure as well as the motion
- Proton spin provides another controllable "knob" to help isolate various physical effects

Polarization and spin asymmetry

Explore new QCD dynamics – vary the spin orientation:

Scattering amplitude square – Probability – Positive definite

$$\sigma_{AB}(Q,\vec{s}) \approx \sigma_{AB}^{(2)}(Q,\vec{s}) + \frac{Q_s}{Q} \sigma_{AB}^{(3)}(Q,\vec{s}) + \frac{Q_s^2}{Q^2} \sigma_{AB}^{(4)}(Q,\vec{s}) + \cdots$$

□ Spin-averaged cross section:

$$\sigma = \frac{1}{2} \left[\sigma(\vec{s}) + \sigma(-\vec{s}) \right]$$
 – Positive definite

□ Asymmetries or difference of cross sections:

• both beams polarized A_{LL}, A_{TT}, A_{LT}

$$A_{LL} = \frac{[\sigma(+,+) - \sigma(+,-)] - [\sigma(-,+) - \sigma(-,-)]}{[\sigma(+,+) + \sigma(+,-)] + [\sigma(-,+) + \sigma(-,-)]} \quad \text{for } \sigma(s_1,s_2)$$

• one beam polarized A_L, A_N – Not necessary positive!

$$A_L = \frac{[\sigma(+) - \sigma(-)]}{[\sigma(+) + \sigma(-)]} \quad \text{for } \sigma(s) \qquad A_N = \frac{\sigma(Q, \vec{s}_T) - \sigma(Q, -\vec{s}_T)}{\sigma(Q, \vec{s}_T) + \sigma(Q, -\vec{s}_T)}$$

Chance to see quantum interference directly

Proton "spin crisis" – excited the field

EMC (European Muon Collaboration '87) – "the Plot":

 \diamond Very little of the proton spin is carried by quarks

Questions driving the spin physics

GPDs!

Current understanding for Proton Spin

The sum rule:
$$S(\mu) = \sum_{f} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2} \equiv J_{q}(\mu) + J_{g}(\mu)$$

- Infinite possibilities of decompositions connection to observables?
- Intrinsic properties + dynamical motion and interactions

An incomplete story:

See Prof. Wakamatsu's talk

Two roles of the proton spin program

□ Proton is a composite particle:

Spin is a consequence of internal dynamics of the bound state

For example, the nucleon-nucleon interaction and shell structure determines the observed nuclear spin states

 Decomposition of proton spin in terms of quark and gluon d.o.f. helps understand the dynamics of a fundamental QCD bound state

 Nucleon is a building block all hadronic matter
 95% mass of all visible matter)
 See Prof. Wakamatsu's talk

 Use the spin as a tool – asymmetries:

Cross section is a probability – classically measured

Spin asymmetry – the difference of two cross sections involving two different spin states

Asymmetry could be a pure quantum effect!

Spin decomposition

□ The "big" question:

If there are infinite possibilities, why bother and what do we learn?

□ The "origin" of the difficulty/confusion:

QCD is a gauge theory: a pure quark field in one gauge is a superposition of quarks and gluons in another gauge

□ The fact:

None of the items in all spin decompositions are direct physical observables, unlike cross sections, asymmetries, ...

□ Ambiguity in interpretation – two old examples:

♦ Factorization scheme:

 $F_2(x,Q^2) = \sum_{q,\bar{q}} C_q^{\text{DIS}}(x,Q^2/\mu^2) \otimes q^{\text{DIS}}(x,\mu^2)$ No glue contribution to F_2 ?

♦ Anomaly contribution to longitudinal polarization:

$$g_1(x,Q^2) = \sum_{q,\bar{q}} \widetilde{C}_q^{ANO} \otimes \Delta q^{ANO} + \widetilde{C}_g^{ANO} \otimes \Delta G^{ANO}$$
$$\Delta \Sigma \longrightarrow \Delta \Sigma^{ANO} - \frac{n_f \alpha_s}{2\pi} \Delta G^{ANO} \quad Larger \ quark \ helicity?$$

Spin decomposition

□ Key for a good decomposition – sum rule:

Every term can be related to a physical observable with controllable approximation – "independently measurable"

DIS scheme is ok for F2, but, less effective for other observables Additional symmetry constraints, leading to "better" decomposition?

- Atural physical interpretation for each term "hadron structure"
- Hopefully, calculable in lattice QCD "numbers w/o distributions"

The most important task is,

Finding the connection to physical observables!

See also Prof. Wakamatsu's talk for interesting physics insides

Basics for spin observables

□ Factorized cross section:

 $\sigma_{h(p)}(Q,s) \propto \langle p, \vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, \vec{s} \rangle$ e.g. $\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \,\hat{\Gamma} \,\psi(y^{-})$ with $\hat{\Gamma} = I, \gamma_5, \gamma^{\mu}, \gamma_5 \gamma^{\mu}, \sigma^{\mu\nu}$ Parity and Time-reversal invariance: $\langle p, \vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, \vec{s} \rangle = \langle p, -\vec{s} | \mathcal{PTO}^{\dagger}(\psi, A^{\mu}) \mathcal{T}^{-1} \mathcal{P}^{-1} | p, -\vec{s} \rangle$ **DIF:** $\langle p, -\vec{s} | \mathcal{PTO}^{\dagger}(\psi, A^{\mu}) \mathcal{T}^{-1} \mathcal{P}^{-1} | p, -\vec{s} \rangle = \pm \langle p, -\vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, -\vec{s} \rangle$ or $\langle p, \vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, \vec{s} \rangle = \pm \langle p, -\vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, -\vec{s} \rangle$ **Operators lead to the "+" sign spin-averaged cross sections Operators lead to the "-" sign spin asymmetries Example:** $\mathcal{O}(\psi, A^{\mu}) = \psi(0) \gamma^+ \psi(y^-) \Rightarrow q(x)$ $\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \gamma^+ \gamma_{\Xi} \psi(\eta^-) \Rightarrow \Delta q(x)$

$$\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \gamma^{+} \gamma^{\perp} \gamma_{5} \psi(y^{-}) \Rightarrow \delta q(x) \to h(x)$$

$$\mathcal{O}(\psi, A^{\mu}) = \frac{1}{xp^{+}} F^{+\alpha}(0) [-i\varepsilon_{\alpha\beta}] F^{+\beta}(y^{-}) \Rightarrow \Delta g(x)$$

Leading power quark distributions

□ Spin projection for leading power quark distributions:

$$\Rightarrow \phi(x, p, s)_{ij} = \int \frac{dy^{-}}{2\pi} e^{ixp^{+}y^{-}} \langle p, s | \overline{\psi}_{i}(0) \psi_{j}(y) | p, s \rangle$$

$$\Rightarrow \phi(x, p, s) = \frac{1}{2} \gamma \cdot p \{ q(x) - 2\lambda \Delta q(x) \gamma_{5} + h(x) \gamma_{5} \gamma \cdot s_{T} \}$$

with nucleon helicity $\lambda = \pm 1/2$

Spin-averaged quark distribution:q(x)Quark helicity distribution: $\Delta q(x)$

Transversity distribution h(x) – chiral odd:

Spin projection operator is even in gamma matrices) Need two for a contribution to the cross section or asymmetry:

Drell-Yan: $A_{TT} \propto h(x_1) \otimes h(x_2)$

SIDIS: $A_T^{\sin(\phi+\phi_s)} \propto h(x) \otimes D_{\text{Collins}}(z)$

Soffer's bound: $q(x) + \Delta q(x) \ge 2|h(x)|$

Earlier "solution" to the "crisis"

$$\Delta q = \int_0^1 dx \Delta q(x) = \langle P, s_{\parallel} | \overline{\psi}_q(0) \gamma^+ \gamma_5 \psi_q(0) | P, s_{\parallel}$$
$$\Delta \Sigma \to \Delta \Sigma - \frac{n_f \alpha_s(Q^2)}{2\pi} \Delta G(Q^2)$$

 \Box What value of ΔG is needed?

 $\Delta G(Q^2)\sim 2$ at Q ~ 1 GeV

Question: How to measure ΔG independently?

- \diamond Precision inclusive DIS
- ♦ Jets in SIDIS
- ♦ Hadronic collisions RHIC spin, …

Lead to the first goal of RHIC spin program

Sea quark polarization – RHIC W program

Gluon helicity contribution – RHIC data

□ RHIC 2009 data:

Jet/pion production at RHIC – gluon helicity:

Inclusive DIS data

Global QCD analysis of helicity PDFs

D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, PRL 113 (2014) 012001

results featured in Sci. Am., Phys. World, ...

□ Impact on gluon helicity:

- ♦ Red line is the new fit
 ♦ Dotted lines = other fits with 90% C.L.
- ♦ 90% C.L. areas
 ♦ Leads △ G to a positive #

The Future: Challenges & opportunities

The Future: Challenges & opportunities

□ One-year of running at EIC:

Wider Q² and x range including low x at EIC!

No other machine in the world can achieve this!

□ Ultimate solution to the proton spin puzzle:

 \diamond **Precision measurement of** $\Delta g(x)$ – extend to smaller x regime

♦ Orbital angular momentum contribution – measurement of GPDs!

Single transverse-spin asymmetry

$\Box A_N$ - consistently observed for over 35 years (~ 0 in parton model)!

Do we understand it?

What do we need?

$$A_N \propto i \vec{s}_p \cdot (\vec{p}_h \times \vec{p}_T) \Rightarrow i \epsilon^{\mu\nu\alpha\beta} p_{h\mu} s_\nu p_\alpha p'_{h\beta}$$

Need a phase, a spin flip, enough vectors

□ Vanish without parton's transverse motion:

A direct probe for parton's transverse motion, Spin-orbital correlation, QCD quantum interference

Current understanding of SSAs

 \Box Two scales observables – $Q_1 >> Q_2 \sim \Lambda_{QCD}$:

 $\overline{S_T}$

SIDIS: $Q >> P_T$

TMD factorization **TMD** distributions

Direct information on parton k_{τ}

DY: $Q \sim Q_T$

Jet, Particle: P_{T}

Collinear factorization Twist-3 distributions

Information on moments of parton k_{τ}

Symmetry plays important role:

Inclusive DIS Single scale

Factorized Drell-Yan cross sections

TMD factorization ($q_{\perp} \ll Q$ **):**

The soft factor, $\ {\cal S}$, is universal, could be absorbed into the definition of TMD parton distribution

 \Box Collinear factorization ($q_{\perp} \sim Q$):

$$\frac{d\sigma_{AB}}{d^4q} = \int dx_a f_{a/A}(x_a,\mu) \int dx_b f_{b/B}(x_b,\mu) \frac{d\hat{\sigma}_{ab}}{d^4q}(x_a,x_b,\alpha_s(\mu),\mu) + \mathcal{O}(1/Q,1/q_{\perp})$$

Spin dependence:

The factorization arguments are independent of the spin states of the colliding hadrons

same formula with different distributions for $\gamma^*, W/Z, H^0...$

Drell-Yan from low p_T to high p_T

Covers both double-scale and single-scale cases:

Most notable TMD distributions

□ Sivers function – transverse polarized hadron:

Sivers function

$$f_{q/p,S}(x, \boldsymbol{k}_{\perp}) = f_{q/p}(x, \boldsymbol{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/p^{\uparrow}}(x, \boldsymbol{k}_{\perp}) \boldsymbol{S} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$

$$= f_{q/p}(x, \boldsymbol{k}_{\perp}) - \frac{k_{\perp}}{M} f_{1T}^{\perp q}(x, \boldsymbol{k}_{\perp}) \boldsymbol{S} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$

□ Boer-Mulder function – transverse polarized quark:

$$f_{q,s_q/p}(x,\boldsymbol{k}_{\perp}) = \frac{1}{2} f_{q/p}(x,\boldsymbol{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q^{\uparrow}/p}(x,\boldsymbol{k}_{\perp}) \boldsymbol{s}_{q} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$
$$= \frac{1}{2} f_{q/p}(x,\boldsymbol{k}_{\perp}) - \frac{1}{2} \frac{k_{\perp}}{M} h_{1}^{\perp q}(x,\boldsymbol{k}_{\perp}) \boldsymbol{s}_{q} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$

Boer-Mulder function

Affect angular distribution of Drell-Yan lepton pair

Most notable TMD distributions

□ Collins function – FF of a transversely polarized parton:

$$D_{h/q,s_q}(z, \boldsymbol{p}_{\perp}) = D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^N D_{h/q^{\uparrow}}(z, p_{\perp}) \, \boldsymbol{s}_q \cdot (\hat{\boldsymbol{p}}_q \times \hat{\boldsymbol{p}}_{\perp})$$
$$= D_{h/q}(z, p_{\perp}) + \frac{p_{\perp}}{z \, M_h} H_1^{\perp q}(z, p_{\perp}) \, \boldsymbol{s}_q \cdot (\hat{\boldsymbol{p}}_q \times \hat{\boldsymbol{p}}_{\perp})$$
Collins function

□ Fragmentation function to a polarized hadron:

$$D_{\Lambda, S_{\Lambda}/q}(z, \boldsymbol{p}_{\perp}) = \frac{1}{2} D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^{N} D_{\Lambda^{\uparrow}/q}(z, p_{\perp}) \boldsymbol{S}_{\Lambda} \cdot (\boldsymbol{\hat{p}}_{q} \times \boldsymbol{\hat{p}}_{\perp})$$
$$= \frac{1}{2} D_{h/q}(z, p_{\perp}) + \frac{p_{\perp}}{z M_{\Lambda}} D_{1T}^{\perp q}(z, p_{\perp}) \boldsymbol{S}_{\Lambda} \cdot (\boldsymbol{\hat{p}}_{q} \times \boldsymbol{\hat{p}}_{\perp})$$

Unpolarized parton fragments into a polarized hadron - Λ

Other TMD distributions

Quark TMDs – rich quantum corelations:

Gluon TMD distributions, ...

Production of quarkonium, two-photon, ...

Process dependence of TMDs

□ The form of gauge link is a result of factorization:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) = \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\,\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p,\vec{S}|\overline{\psi}(0^{-},\mathbf{0}_{\perp}) \boxed{\text{Gauge link}} \frac{\gamma^{+}}{2} \psi(y^{-},\mathbf{y}_{\perp})|p,\vec{S}\rangle$$

- SIDIS: $\Phi_n^{\dagger}(\{+\infty, 0\}, \mathbf{0}_{\perp})\Phi_{\mathbf{n}_{\perp}}^{\dagger}(+\infty, \{\mathbf{y}_{\perp}, \mathbf{0}_{\perp}\})\Phi_n(\{+\infty, y^-\}, \mathbf{y}_{\perp})$
- DY: $\Phi_n^{\dagger}(\{-\infty, 0\}, \mathbf{0}_{\perp})\Phi_{\mathbf{n}_{\perp}}^{\dagger}(-\infty, \{\mathbf{y}_{\perp}, \mathbf{0}_{\perp}\})\Phi_n(\{-\infty, y^-\}, \mathbf{y}_{\perp})$

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},\vec{S})$$

Collinear factorized PDFs are process independent

Critical test of TMD factorization

□ Parity – Time reversal invariance:

 $f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) = f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},-\vec{S})$

Definition of Sivers function:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) \equiv f_{q/h}(x,k_{\perp}) + \frac{1}{2}\Delta^{N}f_{q/h^{\uparrow}}(x,k_{\perp})\,\vec{S}\cdot\hat{p}\times\hat{\mathbf{k}}_{\perp}$$

□ Modified universality:

$$\Delta^N f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,k_{\perp}) = -\Delta^N f_{q/h^{\uparrow}}^{\text{DY}}(x,k_{\perp})$$

Same applies to TMD gluon distribution Spin-averaged TMD is process independent

Transverse motion and TMDs

Inclusive hadrons:

Observed transverse single-spin asymmetries could arise from the Sivers effect or Collins effect, or from a linear combination of the two

Sivers or Collins $\sim \sin(\phi_s)$

 $\varphi_{\text{S}}\text{--angle between spin and event plane}$

Evolution equations for TMDs

□ Collins-Soper equation:

– b-space quark TMD with γ^{*}

Boer, 2001, 2009, JI, Ma, Yuan, 2004 Idilbi, et al, 2004, Kang, Xiao, Yuan, 2011 Aybat, Collins, Qiu, Rogers, 2011 Aybat, Prokudin, Rogers, 2012 Idilbi, et al, 2012, Sun, Yuan 2013, ...

$$\frac{\partial F_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu) \tilde{F}_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F) \qquad \tilde{K}(b_T; \mu) = \frac{1}{2} \frac{\partial}{\partial y_s} \ln \left(\frac{\tilde{S}(b_T; y_s, -\infty)}{\tilde{S}(b_T; +\infty, y_s)} \right)$$

RG equations:

$$\frac{d\tilde{K}(b_{T};\mu)}{d\ln\mu} = -\gamma_{K}(g(\mu)) \qquad \frac{d\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{T},S;\mu;\zeta_{F})}{d\ln\mu} = \gamma_{F}(g(\mu);\zeta_{F}/\mu^{2})\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{T},S;\mu;\zeta_{F}).$$

Evolution equations for Sivers function:

Scale dependence of Sivers function

Aybat, Collins, Qiu, Rogers, 2011

Up quark Sivers function:

Very significant growth in the width of transverse momentum

Nonperturbative input to Sivers function

Aybat, Prokudin, Rogers, 2012:

No disagreement on evolution equations!

Issues: Extrapolation to non-perturbative large b-region Choice of the Q-dependent "form factor"

"Predictions" for A_N of W-production at RHIC?

□ Sivers Effect:

- Quantum correlation between the spin direction of colliding hadron and the preference of motion direction of its confined partons
- QCD Prediction: Sign change of Sivers function from SIDIS and DY

□ Current "prediction" and uncertainty of QCD evolution:

TMD collaboration proposal: Lattice, theory & Phenomenology RHIC is the excellent and unique facility to test this (W/Z – DY)!

Evolution and extrapolation - I

Importance of the evolution - II

Q-dependence of the "form factor" :

Konychev, Nadolsky, 2006

At Q ~ 1 GeV, $ln(Q/Q_0)$ term may not be the dominant one!

 $\mathcal{F}^{\text{NP}} \approx b^2 (a_1 + a_2 \ln(Q/Q_0) + a_3 \ln(x_A x_B) + \dots) + \dots$

Power correction? $(Q_0/Q)^n$ -term?

Better fits for HERMES data?

How collinear factorization generates SSA?

Collinear factorization beyond leading power:

❑ Single transverse spin asymmetry:

Efremov, Teryaev, 82; Qiu, Sterman, 91, etc.

 $\Delta\sigma(s_T) \propto T^{(3)}(x,x) \otimes \hat{\sigma}_T \otimes D(z) + \delta q(x) \otimes \hat{\sigma}_D \otimes D^{(3)}(z,z) + \dots$

Inclusive single hadron production

□ One large scale: $A(p_A, S_\perp) + B(p_B) \rightarrow h(p) + X$ with $p_T >> \Lambda_{QCD}$

Three identified hadrons: $A(p_A, S_{\perp}), B(p_B), h(p)$

QCD collinear factorization:

 $A_N \propto \sigma(p_T, S_\perp) - \sigma(p_T, -S_\perp)$

Qiu, Sterman, 1991, 1998, ...

 $= T_{a/A}^{(3)}(x, x, S_{\perp}) \otimes \phi_{b/B}(x') \otimes \hat{\sigma}_{ab \to c}^{T} \otimes D_{h/c}(z)$ $+ \delta q_{a/A}(x, S_{\perp}) \otimes T_{b/B}^{(3\sigma)}(x', x') \otimes \hat{\sigma}_{ab \to c}^{\phi} \otimes D_{h/c}(z)$ $+ \delta q_{a/A}(x, S_{\perp}) \otimes \phi_{b/B}(x', x') \otimes \hat{\sigma}_{ab \to c}^{D} \otimes D_{h/c}^{(3)}(z, z)$

Leading power contribution to cross section cancels! Only one twist-3 distribution at each term!

Three-type contributions:

Spin-flip: Twist-3 correlation functions, transversity distributions

Phase: Interference between the real part and imaginary part of the scattering amplitude

Twist-3 correlation functions

□ Twist-3 fragmentation functions:

Kang, Yuan, Zhou, 2010

Moment of Collins function?

All these correlation functions have No probability interpretation! Quantum interference between a single and a composite state

SSAs generated by twist-3 PDFs

□ First non-vanish contribution – interference:

□ Dominated by the derivative term – forward region:

$$E \frac{d\Delta\sigma}{d^{3}\ell} \propto \epsilon^{\ell_{T}s_{T}n\bar{n}} D_{c\rightarrow\pi}(z) \otimes \left[-x\frac{\partial}{\partial x}T_{F}(x,x)\right] \qquad \text{Qiu, Sterman, 1998, ...}$$

$$\otimes \frac{1}{-\hat{u}} \left[G(x') \otimes \Delta\hat{\sigma}_{qg\rightarrow c} + \sum_{q'} q'(x') \otimes \Delta\hat{\sigma}_{qq'\rightarrow c}\right]$$

$$A_{N} \propto \left(\frac{\ell_{\perp}}{-\hat{u}}\right) \frac{n}{1-x} \quad \text{if } T_{F}(x,x) \propto q(x) \propto (1-x)^{n}$$

$$A_{N} \propto \left(\frac{\ell_{\perp}}{-\hat{u}}\right) \frac{n}{1-x} \quad \text{if } T_{F}(x,x) \propto q(x) \propto (1-x)^{n}$$

$$E_{\ell} \frac{d^{3}\Delta\sigma(\tilde{s}_{T})}{d^{3}\ell} = \frac{\alpha_{s}^{2}}{S} \sum_{a,b,c} \int_{z_{\min}}^{1} \frac{dz}{z^{2}} D_{c\rightarrow h}(z) \int_{x'_{\min}}^{1} \frac{dx'}{x'} \frac{1}{x'S + T/z} \phi_{b/B}(x) \sqrt{4\pi\alpha_{s}} \left(\frac{\epsilon^{\ell_{s}rn\bar{n}}}{z\hat{u}}\right)$$

$$\times \frac{1}{x} \left[T_{a,F}(x,x) - x\left(\frac{d}{dx}T_{a,F}(x,x)\right)\right] H_{ab\rightarrow c}(\hat{s},\hat{t},\hat{u})$$

Twist-3 distributions relevant to A_N

□ Two-sets Twist-3 correlation functions:

No probability interpretation!

 $\widetilde{\mathcal{T}}_{q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} \left[e^{s_T \sigma n\bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$

$$\widetilde{T}_{G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[\epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^+(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (-g_{\rho\lambda})$$

$$\widetilde{T}_{\Delta q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \left[i s_T^{\sigma} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$$

$$\widetilde{\mathcal{T}}_{\Delta G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} \, e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[i \, s_T^{\sigma} \, F_{\sigma}^{+}(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \, ds_T^{-}($$

Twist-2 distributions:

- Unpolarized PDFs:
- Polarized PDFs:

Role of color magnetic force!

$$\begin{aligned} q(x) &\propto \langle P | \overline{\psi}_q(0) \frac{\gamma^+}{2} \psi_q(y) | P \rangle \\ G(x) &\propto \langle P | F^{+\mu}(0) F^{+\nu}(y) | P \rangle (-g_{\mu\nu}) \\ \Delta q(x) &\propto \langle P, S_{\parallel} | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \psi_q(y) | P, S_{\parallel} \rangle \\ \Delta G(x) &\propto \langle P, S_{\parallel} | F^{+\mu}(0) F^{+\nu}(y) | P, S_{\parallel} \rangle (i\epsilon_{\perp \mu\nu}) \end{aligned}$$

Twist-3 fragmentation functions:

See Kang, Yuan, Zhou, 2010, Kang 2010

لللللل

Kang, Qiu, 2009

Test QCD evolution at twist-3 level

Kang, Qiu, 2009; Yuan, Zhou, 2009 Scaling violation – "DGLAP" evolution: Vogelsang, Yuan, 2009, Braun et al, 2009

$$\mu_{F}^{2} \frac{\partial}{\partial \mu_{F}^{2}} \begin{pmatrix} \tilde{T}_{q,F} \\ \tilde{T}_{\Delta q,F} \\ \tilde{T}_{G,F} \\ \tilde{T}_{G,F} \\ \tilde{T}_{G,F}^{(d)} \\ \tilde{T}_{G,F}^{(d)} \\ \tilde{T}_{G,F}^{(d)} \\ \tilde{T}_{\Delta G,F}^{(d)} \\ \tilde{T}_{\Delta G,F}^{(d)} \end{pmatrix} = \begin{pmatrix} K_{qq} & K_{q\Delta q} & K_{qG}^{(f)} & K_{qG}^{(d)} & K_{q\Delta G}^{(f)} & K_{q\Delta G}^{(d)} \\ K_{\Delta qq} & K_{\Delta q\Delta q} & K_{\Delta qA}^{(f)} & K_{\Delta qA}^{(f)} & K_{\Delta qA}^{(f)} & K_{\Delta qA}^{(d)} \\ K_{\Delta qq} & K_{\Delta qA} & K_{GG}^{(f)} & K_{GG}^{(f)} & K_{\Delta qA}^{(f)} & K_{GA}^{(d)} \\ K_{Gq}^{(d)} & K_{G\Delta q}^{(d)} & K_{GG}^{(d)} & K_{GG}^{(f)} & K_{G\Delta G}^{(f)} & K_{G\Delta G}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta G\Delta q}^{(d)} & K_{\Delta GA}^{(f)} & K_{\Delta GAA}^{(f)} & K_{\Delta GAA}^{(f)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GG}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta GAq}^{(d)} & K_{\Delta GAq}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta GAq}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta GAA}^{(d)} & K_{\Delta GAA}^{(d)} &$$

□ Evolution equation – consequence of factorization:

Factorization: $\Delta \sigma(Q, s_T) = (1/Q)H_1(Q/\mu_F, \alpha_s) \otimes f_2(\mu_F) \otimes f_3(\mu_F)$

DGLAP for f_2 :

Evolution for f₃:

$$\frac{\partial}{\partial \ln(\mu_F)} f_2(\mu_F) = P_2 \otimes f_2(\mu_F)$$
$$\frac{\partial}{\partial \ln(\mu_F)} f_3 = \left(\frac{\partial}{\partial \ln(\mu_F)} H_1^{(1)} - P_2^{(1)}\right) \otimes f_3$$

Scaling violation of twist-3 correlations?

♦ Large deviation at low x (stronger correlation)

Kang, Qiu, PRD, 2009

Fits with T_F(x,x) only

Kouvaris-Qiu-Vogelsang-Yuan, 2006

□ Fitting both fixed target and collider data:

 $T_{q,F}(x,x) = N_q x^{\alpha_q} (1-x)^{\beta_q} \phi_q(x)$

Connection between TMDs and Twist-3

□ Sivers function and twist-3 correlation:

A "sign mismatch"

□ "direct" and "indirect" twist-3 correlation functions:

Kang, Qiu, Vogelsang, Yuan, 2011

Calculate $T_{\alpha,F}(x,x)$ by using the measured Sivers functions

"Failed attempts"

\Box A node in k_T-distribution:

- \diamond Like the DSSV's \triangle G(x)
- ♦ HERMES vs COMPASS
- \diamond Physics behind the sign change?

Kang-Prokudin, PRD85, 2012

Conclusion:

The sivers-type twist-3 contribution might not be the leading source of SSA of pion production – Twist-3 fragmentation contribution?

Add twist-3 fragmentation contribution

Leading order results:

Metz, Pitonyak, PLB723 (2013)

$$\begin{split} \frac{P_h^0 d\sigma_{pol}}{d^3 \vec{P}_h} &= -\frac{2\alpha_s^2 M_h}{S} \,\epsilon_{\perp \mu \nu} \, S_{\perp}^{\mu} P_{h\perp}^{\nu} \sum_i \sum_{a,b,c} \int_{z_{min}}^1 \frac{dz}{z^3} \int_{x'_{min}}^1 \frac{dx'}{x'} \frac{1}{x'S + T/z} \frac{1}{-x\hat{u} - x'\hat{t}} \\ &\times \frac{1}{x} \, h_1^a(x) \, f_1^b(x') \left\{ \left(\hat{H}^{C/c}(z) - z \frac{d\hat{H}^{C/c}(z)}{dz} \right) S_{\hat{H}}^i + \frac{1}{z} \, H^{C/c}(z) \, S_{H}^i \right. \\ &+ 2z^2 \int \frac{dz_1}{z_1^2} \, PV \frac{1}{\frac{1}{z} - \frac{1}{z_1}} \, \hat{H}_{FU}^{C/c,\Im}(z, z_1) \, \frac{1}{\xi} \, S_{\hat{H}_{FU}}^i \right\} \end{split}$$

□ New fitting results:

Kanazawa, Koike, Metz, Pitonyak, PRC89, 2014

Summary

- □ Since the "spin crisis" in the 80th, we have learned a lot about proton spin there is a need for orbital contribution
- Single transverse-spin asymmetry in real, and is a unique probe for hadron's internal dynamics – Sivers, Collins, twist-3, ... effects
- Evolution of TMDs is still a very much open question! Better approach to non-perturbative inputs is needed
- QCD has been extremely successful in interpreting and predicting high energy experimental data!
- But, we still do not know much about hadron structure – a lot of work to do!

Thank you!

Backup slides

QCD and hadrons