Daniel Jumper Student Introduction

Spinfest 2015

Personal Info

From Dallas Texas

Academic History

- Undergrad:
 - Abilene Christian University ('05-'09)
 - Worked on PHENIX summer '06, '07
- Grad School:
 - University of Illinois at Urbana-Champaign ('09present)
 - Advisor: Matthias Grosse Perdekamp
 - Work:
 - Local UIUC RPC r&d
 - RPC assembly(St. 1) and operation (Run 13)
 - Run 13 $W \rightarrow \mu AL$ analysis

Slideshow!

RPC 3 "Efficiency" Hodoscope

RPC 1 Before/After Installation

Slideshow!

My Analysis - Run 13 $W \rightarrow \mu AL$

• Goal:

- Better constrain separate quark and anti-quark contributions to longitudinal proton spin
- Channel:
 - $qq \rightarrow W \pm \rightarrow \mu \nu \mu$ (at forward rapidity)
 - Weak interaction: parity violation Constrains possible quark helicities giving a simplified $AL \sim \Delta q$, Δq relation
- Mike's introduction had details on the rest!

Recent Focus - Gaussian Process Regression

- What is GPR?
 - Input: data points with uncertainty
 - Output: predicted data points with uncertainty
 - i.e. interpolated + extrapolated distribution or "fit" distribution

Recent Focus - Gaussian Process Regression

• Benifits:

- Does not rely on functional form
 - does have some higher level underlying assumptions about the distribution
- Produces uncertainties with the "fit" distribution

• Resources:

- PHENIX GPR Analysis Note
- A nice basic paper on GPR
- <u>A more rigorous GPR explanation</u>
- Python Packages:
 - <u>GPy</u> has 2D functionality but harder to use
 - sklearn.gaussian_process

GPR in Run 13 W Analysis

- Important part of asymmetry calculation: Signal/Background ratio calculation.
 - W to muon signal from simulation
 - muon backgrounds from simulation
 - hadronic background extrapolated from data

GPR in Run 13 W Analysis

 Important part of Signal/Background Extraction: Extrapolate "dw23" distribution to high "wness"

Don't forget the past!

• Spinfest 2014 Talks (indico)

- Nice physics talks, student introductions, etc.
 separated by sessions
- Check out the <u>computational tutorials</u> for useful computing skills and tips!
- Spinfest 2013 Timetable (indico)
 - also contains talks from 2013 (you have to browse the schedule manually though)
- Spinfest 2012 Talks (spinfest 2012 webpage)
 - user "spinfest". our experiment
 - One particularly useful <u>practical talk on phenix analysis</u> from scott wolin