Probing Core-Collapse Supernova Physics with Multi-Messenger Observations: <u>Status of Multi-D Supernova Models</u>

> Kei Kotake (Fukuoka University)

with Tomoya Takiwaki (RIKEN), Ko Nakamura (Waseda Univ.) Takami Kuroda (Univ. Basel), Yudai Suwa (Kyoto Univ.) Kazuhiro Hayama (Osaka-city Univ), Youhei Masada (Kobe Univ.) Horiuchi Shunsaku (Virginia tech.), and Masaomi Tanaka (NAOJ)

RIBF seminar, June 23, 2015 @ Riken

Outline

✓ <u>Short Introduction</u>

- Standard Core-Collapse Supernova (CCSN) theory

✓ <u>Recent Status of CCSN Modeling</u>

- Neutrino-Radiation Hydrodynamics Simulations
- Fostering weak explosions (strangeness, rotation, GR)

✓ <u>Multi-Messenger Signatures</u>

- How can we learn the central engine from neutrinos and gravitational-waves ?
- <u>Strategies</u> toward <u>the final goal</u>?

<u>Bottom-line</u>

LETTER

February 19, 2014

Asymmetries in core-collapse supernovae from maps of radioactive ⁴⁴Ti <u>in Cassiopeia A</u>

B. W. Grefenstette¹, F. A. Harrison¹, S. E. Boggs², S. P. Reynolds³, C. L. Fryer⁴, K. K. Madsen¹, D. R. Wik⁵, A. Zoglauer², C. I. Ellinger⁶, D. M. Alexander⁷, H. An⁸, D. Barret^{9,10}, F. E. Christensen¹¹, W. W. Craig^{2,12}, K. Forster¹, P. Giommi¹³, C. J. Hailey¹⁴, A. Hornstrup¹¹, V. M. Kaspi⁸, T. Kitaguchi¹⁵, J. E. Koglin¹⁶, P. H. Mao¹, H. Miyasaka¹, K. Mori¹⁴, M. Perri^{13,17}, M. J. Pivovaroff¹², S. Puccett^{15,17}, V. Rana¹, D. Stern¹⁸, N. J. Westergaard¹¹ & W. W. Zhang⁵

Progression of a Supernova Explosion

http://www.nasa.gov/jpl/nustar/supernova-explosion-20140049 (r

Origin of explosion asymmetry
 Origin of heavy elements
 Origin of explosion energy (~ 10⁵¹ erg = 1 Bethe)

~350 years, Type II_b

Ti

Explosion Mechanism

<u>"3 minutes</u>" to overview Core-Collapse Supernova physics

1D v-rad-hyd simulation of 15 M_{sun} star

visualization : T. Wada (Riken)

Typical scales after bounce and Density-Temperature relation

1D fails⇒ Current paradigm "Multi-D" neutrino mechanism

(pioneered by Colgate & White (1966), see Janka (2012), Burrrows (2013), Kotake et al. (2012) for review)

"Four steps" from collapse to explosion (see, e.g., Suwa et al. 2010,2011,2013, ApJ)

- **1**st : After bounce, bounce shock stalls.
- **2nd:** Neutrino-driven convection and the SASI.
- 3rd: In the heating region, dwell-time of material gets longer due to non-radial motions. (turbulent pressure helps explosion).
 4th: At around O(100)s ms after bounce, neutrino-driven explosions set in.

Numerics both in our 2D and 3D models
 ✓ IDSA spectral transport (Liebendoerfer+09) + Newtonian hydro
 ✓ Lattimer-Swesty (1991) EOS (K=220 MeV): consis. with 2 M_{sun} NS.
 ✓ 2D results between our code, Valencia, Garching code similar !
 (e.g., Obergaulinger et al. (2014), Hanke et al. (PhD)) Detailed comparison in progress.

Numerics both in our 2D and 3D models

IDSA spectral transport (Liebendoerfer+09) + Newtonian hydro
 Lattimer-Swesty (1991) EOS (K=220 MeV): consis. with 2 M_{sun} NS.
 2D results between our code, Valencia, Garching code similar !
 (e.g., Obergaulinger et al. (2014), Hanke et al. (PhD)) Detailed comparison in progress.

r [km]

r [km]

Status of Neutrino-Radiation Hydrodynamics Supernova Simulations

Progenitor	Group Mechan (Year)		ism Dim. (Hydro)		$t_{exp} = E_{exp}(B)$ (ms) $\otimes t_{eb}$ (ms)		ν transport (Dim, $O(v/c)$)			
$8.8 M_{\odot}$	MPA (2006,201)	ν -drive	n ID(2D (PN)		~200 0.1 (~800)		Boltzmann 2, $O(v/c)$			
(NH88)	Princeton (2006)	ν-drive	2 n	2D 2 (N)		§125 0.1 -		MGFLD 1, (N)		
$10 M_{\odot}$ (WHW02)	Basel	Basel $\nu + (QC)$		2D 1D			0.44	Boltzmann		
11 Mo	mass (solar masses)		metallicity							
(WW95)			solar			10) ⁻⁴ solar	primordial		
	10.8		242 kByte							
11.2 M_{\odot}	11	.0	24	249 kByte		<u>24</u>	5 kByte	244 kByte		
(WHW02)	11	11.2 11.4		242 kByte			7 kByte			
	. 11			225 kByte			5 kByte			
	11	11.6		224 kByte		247 kByte				
12 M.	11	11.8 12.0 12.2 12.4 12.6 12.8		237 kByte			6 kByte			
(WH07)	12			234 kByte 236 kByte			5 kByte	<u>254 kByte</u> 		
13 M _☉	12						0 kByte			
(WHW02)	12			237 kByte 233 kByte		25	1 kByte			
(NH88)	12					24	7 kByte			
	12			234 kByte			7 kByte			
$15 M_{\odot}$ (WW05)	13	13.0		228 kByte			6 kByte	243 kByte		
(WHW09)	- 13	13.2		232 kByte			2 kByte			
(**11**02)	13	3.4	234 kByte			24	0 kByte			
	13	.6	23	2 kByte	2	24	1 kByte			
(WH07)	13.8 233 k		3 kByte	yte <u>243 kByte</u>						
$20 M_{\odot}$	14	l.0	23	4 kByt	ym	10.5	ATOyte 5	VI sun Star		
(WHW02)	14	14.2		233 k BO 1 m			SByte			
$25~M_{\odot}$	14	1.4	23		00	sle∛	6 Peter	Weaver		
a (WH07)	- 14	14.6		236 kByte			5 kByte			
	14	.8	23	6 kByte	IP	200	o l Byte			

(KK+ (2012) PTEP, Mezzacappa+(2015))

Big breakthrough : ✓ Success of the neutrino mechanism: (<u>shock-revival</u>) for 8.8 to 27 M_{sun} stars in 2D self- consistent simulations !

~40 successful models But still, The neutrino mechanism: <u>Unexplored >90 %</u>

Systematic study needed: Self-consistent (in 2D, firstly) sim. to gain a "<u>Landscape view</u>" of explosion dynamics !

2D-IDSA simulations for 101 progenitors with solar metallicity

		T _{pb} = Oms						Nakamura et			
500km	۲ 2004 s10.8	۲ 2004 s11.0	۲ 2004 s11.2	s11.4	s11.6	200km	200km 2.00km	۳ s12.0	s12.2		
500km	s12.4	۳ 2004 s12.6	۲ 2004 s12.8	s13.0	s13.2	200km 1a	200km 3.4	۳ s13.6	s13.8		
500km	۳ 2005ع \$14.0	۳ ۵2s14.2	۳ 2004 s14.4	s14.6	s14.8	200km	200km 5.0	۲ s15.2	s15.4		
500km	۳ 2004 s15.6	۲ 2003 s15.8	للا 2004 s16.0	s17.0	s18.0	200km 1s	200km 0.e	۳ عرب s20.0	s21.0		
500km	۲ ۲00 <u>3</u> \$22.0	۳ ۵23.0 823.0	۲ 2004 s24.0	s25.0	s26.0	<mark>2004 m</mark>	200km 200km	۳ ۲ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳	s29.0		
500km	200km 200km s30.0	ی 2004 s31.0	ی 2004 s32.0	s34.0	s36.0	200km 53	200km 0.8	۲۹۵۵ s40.0	s75.0		
5		10		15			20		25		

"Systematics" between progenitor and explodability connections ? Nakamura et al. (2015)

"Systematics" between progenitor and explodability connections ? Nakamura et al. (2015)

"Progenitor mass" is a "not" good diagnostics for explosion.

Key : "Compactness: M_{core} /R_{core}" (o'c

d

 \sim

at t_{fin}

M_{PNS} [M_o]

(O'Connor and Ott (2011))

✓ Higher Compactness ⇒ Higher mass accretion to PNS ⇒ Heavier PNS ⇒ Higher neutrino luminosity ⇒ "Diagnostic" Exp. energy and Nickel mass higher (for the NS forming case) : Core-Collapse Supernova is initial value problem I

2D landscape simulations for 378 progenitors (WHW02)

Our code development toward 3D Neutrino-driven Models

2009 : Light-bulb 3D model

3D vs. 2D

(e.g., Takiwaki + (2012,2014), ApJ)

3 msec

 ✓ For 11.2 M_{sun}, 3D explosions are weaker than 2D. (27 M_{sun} : Hanke et al. (2014), however, not for 9.6 M_{sun} Melson et al. (2015))
 ⇒ The "3D vs. 2D problem" is progenitor dependent.

✓ No "Bethe" models obtained in 3D....

⇒ Need to find ingredients to foster 3D explosions ! Candidates: Rotation, General Relativity, Microphysics

Detailed microphysics important : Strangeness effects power explosions

NEUTRINO-DRIVEN EXPLOSION OF A 20 SOLAR-MASS STAR IN THREE DIMENSIONS ENABLED BY STRANGE-QUARK CONTRIBUTIONS TO NEUTRINO-NUCLEON SCATTERING

TOBIAS MELSON^{1,2}, HANS-THOMAS JANKA¹, ROBERT BOLLIG^{1,2}, FLORIAN HANKE^{1,2}, ANDREAS MAREK³, AND BERNHARD MÜLLER⁴

Draft version April 30, 2015

Submitted to ApJL

ABSTRACT

Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the PROMETHEUS-VERTEX code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 M_{\odot} progenitor star that a moderate strangeness-dependent contribution of $g_a^s = -0.2$ to the axial-vector coupling constant $g_a \approx 1.26$ can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is well compatible with current experimental limits and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to in-

Detailed microphysics important : Strangeness effects power explosions

VERTEX code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 M_{\odot} progenitor star that a moderate strangeness-dependent contribution of $g_a^s = -0.2$ to the axial-vector coupling constant $g_a \approx 1.26$ can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is well compatible with current experimental limits and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to in-

Ultimate requirement of CCSN simulations

Disclaimer: only CCSNs

General Relativity (GR) important: Aid the onset of an explosion

(Deeper potential well : core structures smaller \Rightarrow making both <E_{ν} > and L_{ν} higher)

(e.g., B. Mueller et al. (2013), Kuroda et al. (2012))

✓ 3D full GR code with multi-energy neutrino transport via the M1 scheme:

"FUGRA" : Fully General Relativistic code with neutrino transport

Kuroda, Takiwaki, and KK, submitted to ApJS. (arXiv:1501.06330)

The marriage of BSSNOK formalism (3D GR code, Kuroda & Umeda (2010, ApJS))

+ M1 scheme; Shibata+2011, Thorne 1981, (see also, Just et al. (2015), O'Connor (2015) for recent work)

✓ <u>Best_nuclear physics should be included in "general-relativistic hydrodynamics" code</u>.

3D full GR simulations Tpb(ms)=0.600086

7.5 10. 12. 15. 18.

SFHx EOS (Hempel & Schaffner-Bielich (2010))

:fits well with NS observation/Experiment

(e.g., Kuroda et al. (2012, 2014))

 $15 M_{sun}$

SASI activity higher for softer EOS

7.5 10, 12, 15, 18

15 M_{sun}

Shen EOS : Stiff (Shen+98)

✓ 1000ms/(4 ms (gray FUGRA) per day @4096 processors)

- ~ 250 days $(R_{shock} > R_{iron})$
 - > 2500 days ... (R_{shock} > R_{star}); fall-back/BH supernovae
- Need next-generation (exa-scale) platforms ! (such as the upgrade of Tianhe (China), Titan (Oak-Ridge) /Coral (Livermore), K (Riken))

Neutrino and Gravitational-Wave signatures from 15 M_{sun} with SFHx (or SHEN EOS)

Kuroda, KK, & Takiwaki (in prep)

 \checkmark The modulation of neutrino signals \Rightarrow the SASI timescales ! (e.g., Tamborra et al. (2014)) ✓ More clearer excess for softer EOS \Rightarrow Possible probe to EOSs. ✓ **Super-Kamiokande** : back-ground free (nicer than ICECUBE), can detect

SASI-mod. signals for a Galactic event, Hyper-Kamiokande (2020) for an extragalactic event !

Neutrino and Gravitational-Wave signatures from 15 M_{sun} with SFHx (or SHEN EOS)

Kuroda, KK, & Takiwaki (in prep)

✓ The modulation of neutrino signals ⇒ the SASI timescales ! (e.g., Tamborra et al. (2014)) ✓ More clearer excess for softer EOS ⇒ Possible probe to EOSs.

✓ Super-Kamiokande : back-ground free (nicer than ICECUBE), can detect

SASI-mod. signals for a Galactic event, Hyper-Kamiokande (2020) for an extragalactic event !

GW signal reconstruction by Coherent Network Analysis

✓ LIGOx2, VIGRO, KAGRA

Hayama, Kuroda, KK, & Takiwaki (2015) & in prep

Sensitivity curves and model predictions

The reconstructed GW spectrogram

The, quasi-periodic, SASI-modulated GW in the best sensitivity range of interferometers.
 Coherent network analysis: these signals detectable out to the LMC (50 kpc).

Perspectives: Where are we and where are we going?

"A" self-consistent 3D model

Takiwaki, KK, Suwa (2014,2012 ApJ)

For an 11.2 M_{sun} star, the stalled shock revived ! (4D with approximate transport)

<u>Gray-transport simulation</u> Nucleosynthesis

> 9000 km $(\sim 2,3 \text{ S pb})^{y}$ Wongwathanarat et al. (2012)

Cas A
 Cas A
 Cas A
 Solution of the second second

DeLaney et al. (2010)

Hydrodynamic model: Mixing, RT, RM instabilities

7.5 e7 km (min – day)

Wongwathanarat et al. (2014)

Project L: Long-term evolution in self-consistent 3D (GR) models ⇒ <u>confront CCSN theory with observation (</u>Takiwaki-Kuroda-Nakamura-Kotake)

Project F : Full Boltzmann project : Sumiyoshi-Nagakura-Iwakami-Yamada ⇒ ultimately test whether the stalled shock would revive.

Summary

- 1. <u>"Progenitor Compactness" is (one of) the key(s)</u> to characterize diversity of 2D neutrino-driven explosions.
- 2. For high compact progenitors,
 - ✓ <u>3D explosions generally under-energetic than 2D.</u>
 - progenitor dependence yet unclear.
 - ✓ <u>Need to find some ingredients to foster 3D explosions.</u>
 - Strangeness effects attracting attention (e.g., Melson et al. (2015))
 - Impacts of rotation (and magnetic fields) yet to be clarified in 3D self-consistent models.

(e.g., MRI, Obergaulinger+2009, Masada, KK, Takiwaki 2012, Sawai+2014))

- 3. <u>3D GR modelling has just started with increasing microphysical inputs</u>. (e.g., FUGRA, it takes time ... next generation machines needed !)
- 4. Detailed correlation analysis of neutrino and GWs signatures mandatory.

Many thanks!

: provide information to break the degeneracy (M_{PNS} , R_{PNS} , T_{PNS} , R_{shock} , EOS etc.) \Rightarrow important probe to the explosion physics!

5. **Post-K, Hyper-K, and KAGRA**: the village !