

RIKEN 2koma plus seminar

Structure evolutions in exotic nuclei and
nuclear forces
－Day 2 －

Takaharu Otsuka
University of Tokyo／MSU／KU Leuven
東京大学
THEUNVERSITYOE TOKYO

Addenda to Day 1

renormalization of tensor force exotic silicon isotopes

Response to the renormalization of interactions

Renormalization processes

- short-range correlations
- in-medium corrections
bare interaction for free space

$$
V=V_{c}+V_{L S}+V_{T}
$$

effective interaction for a model space of low-momenta

$$
V^{\prime}=V_{C}^{\prime}+V_{L S}+V_{T}^{\prime}+V_{N N N}+\ldots
$$

In general, V_{x}^{\prime} differs from V_{x}.
If $\mathrm{V}_{x}=\mathrm{V}_{x}$, Renormalization Persistency holds.

- only good approx. at best, but it makes sense
- new approach to nuclear forces

Treatment of tensor force by $V_{\text {low k }}$ and Q box (3rd order)

Monopole component of tensor interactions in pf shell

ㅁ Bare (AV8')
] short-range correlation by $\mathrm{V}_{\text {low }}$

- - -

in-medium correction with intermediate states ($>10 \mathrm{hw}, 3^{\text {rd }}$ order)
$\mathrm{V}_{\text {low k }}$: Bogner, Kuo, Schwenk

- - - only for comparison

O, Suzuki, et al.
PRL 104, 012501 (2010)

N3LO (EFT of QCD) for pf-shell

short-range correl.

in-medium correc. $-\Lambda=2.1 \mathrm{fm}^{-1}$

PHYSICAL REVIEW C 84, 044322 (2011)
Renormalization persistency of the tensor force in nuclei
N.Tsunoda, T.O., K.Tsukiyama, M.H.-Jensen

Two steps of renormalization from full space to low-momentum space relevant to many-nucleon systems

1. Treatment of short range correlations
2. Inclusion of in-medium effects

Two major components in nuclear force
(a) central force :
(strongly renormalized)

(b) tensor force : $\frac{\pi+\rho \text { meson }}{\text { exchange }}$

monopole component of
tensor force in nuclear medium almost equal (no renormalization)
N.Tsunoda, T.O.,
K.Tsukiyama, M.H.-Jensen, PRC84,044322 (2011)
monopole component of
tensor force in free space

Tensor potentials

> What is the relevant part of the tensor force to the present issue.

medium-long range

Tensor force effects in exotic Si isotopes

PHYSICAL REVIEW LETTERS

Well Developed Deformation in ${ }^{42} \mathbf{S i}$

S. Takeuchi, ${ }^{1, *}$ M. Matsushita, ${ }^{1,2, \dagger}$ N. Aoi, ${ }^{1, \ddagger}$ P. Doornenbal, ${ }^{1}$ K. Li, ${ }^{1,3}$ T. Motobayashi, ${ }^{1}$ H. Scheit, H. Wang, ${ }^{1,3}$ H. Baba, ${ }^{1}$ D. Bazin, ${ }^{4}$ L. Càceres, ${ }^{5}$ H. Crawford, ${ }^{6}$ P. Fallon, ${ }^{6}$ R. Gernhäuser, ${ }^{7}$ J. Gibeli
C. Hinke, ${ }^{7}$ C. R. Hoffman, ${ }^{10}$ R. Hughes, ${ }^{11}$ E. Ideguchi,,${ }^{9, \ddagger}$ D. Jenkins, ${ }^{12}$ N. Kobayashi, ${ }^{13}$ Y. Konc T. Le Bleis,,${ }^{14,15,9}$ J. Lee, ${ }^{1}$ G. Lee, ${ }^{13}$ A. Matta, ${ }^{16}$ S. Michimasa, ${ }^{9}$ T. Nakamura, ${ }^{13}$ S. Ota, ${ }^{9}$ M. Petri, ${ }^{6,8}{ }^{7} 7$ S. Shimoura, ${ }^{9}$ K. Steiger, ${ }^{7}$ K. Takahashi, ${ }^{13}$ M. Takechi,,${ }^{1, * *}$ Y. Togano, ${ }^{1, * *}$ R. Winkler, ${ }^{4, \dagger \dagger}$ a ${ }^{1}$ RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

PRL 99, 022503 (2007)
PHYSICAL REVIEW LETTERS

Collapse of the $N=\mathbf{2 8}$ Shell Closure in ${ }^{42} \mathrm{Si}$

B. Bastin, ${ }^{2}$ S. Grévy, ${ }^{1, *}$ D. Sohler, ${ }^{3}$ O. Sorlin, ${ }^{1,4}$ Zs. Dombrádi, ${ }^{3}$ N. L. Achouri, ${ }^{2}$ J.C. Angélique, ${ }^{2}$ D. Baiborodin, ${ }^{5}$ R. Borcea, ${ }^{6}$ C. Bourgeois, ${ }^{4}$ A. Buta, ${ }^{6}$ A. Bürger, ${ }^{7,8}$ R. Chapman, ${ }^{9}$ J. C. Dalouzy, ${ }^{1}$ Z. Dlou Z. Elekes, ${ }^{3}$ S. Franchoo, ${ }^{4}$ S. Iacob, ${ }^{6}$ B. Laurent, ${ }^{2}$ M. Lazar, ${ }^{6}$ X. Liang, ${ }^{9}$ E. Liénard, ${ }^{2}$ J. Mrazek, ${ }^{5}$ L. Nal ${ }^{5}$ pa N. A. Orr, ${ }^{2}$ Y. Penionzhkevich, ${ }^{10}$ Zs. Podolyák, ${ }^{11}$ F. Pougheon, ${ }^{4}$ P. Roussel-Chomaz, ${ }^{1}$
M. G. Saint-Laurent, ${ }^{1}$ M. Stanoiu, ${ }^{4,6}$ and I. Stefan ${ }^{1}$
F. Nowacki ${ }^{12}$ and A. Poves ${ }^{13}$

The energies of the excited states in very neutron-rich ${ }^{42} \mathrm{Si}$ and ${ }^{41,43} \mathrm{P}$ have been measured using in-beam γ-ray spectroscopy from the fragmentation of secondary beams of ${ }^{42,44} \mathrm{~S}$ at 39 A MeV . The low 2^{+}energy of ${ }^{42} \mathrm{Si}, 770(19) \mathrm{keV}$, together with the level schemes of ${ }^{41,43} \mathrm{P}$, provides evidence for the disappearance of the $Z=14$ and $N=28$ spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that ${ }^{42} \mathrm{Si}$ is best described as a well-deformed oblate rotor.

Tensor-force driven Jahn-Teller effect -> shape evolution

physical review c 86, 051301(R) (2012) - 86, $051301(\mathrm{R})(2012)$. Utsuno, TO, Brown, Honma, Mizusaki, Shimizu

RIBF data close to

FIG. 3. (Color online) (a) and (b) $2_{1,2}^{+}$(blue lines and red circles) and 4_{1}^{+}(green lines and red triangles) energy levels and (c) and (d) $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$values of Si and S isotopes for $N=22-28$. Symbols are experimental data [13-19]. Solid (dashed) lines are calculations with (without) the cross-shell tensor force.

Tensor force effects on binding energy (two-neutron separation energy)

FIG. 6. (Color online) Two-neutron separation energies of Si and S isotopes from $N=22$ to 28 . Solid (dashed) lines are calculations with (without) the cross-shell tensor force. Points are experimental data $[40,41]$.

Stancu, Brink and Flocard, Phys. Lett. 68B, 108 (1977)
Zero-range spin-momentum tensor coupling term

$$
\begin{align*}
u_{\mathrm{T}} & =\frac{1}{2} T\left\{\left[\left(\sigma_{1} \cdot k^{\prime}\right)\left(\sigma_{2} \cdot k^{\prime}\right)-\frac{1}{3}\left(\sigma_{1} \cdot \sigma_{2}\right) k^{\prime 2}\right] \delta\left(\boldsymbol{r}_{1}-r_{2}\right)\right. & & \text { This is not be a good approximation } \\
& \left.+\delta\left(\boldsymbol{r}_{1}-r_{2}\right)\left[\left(\sigma_{1} \cdot k\right)\left(\sigma_{2} \cdot k\right)-\frac{1}{3}\left(\sigma_{1} \cdot \sigma_{2}\right) k^{2}\right]\right\} & & \text { to the tensor force itself, } \\
& +U\left\{\left(\sigma_{1} \cdot k^{\prime}\right) \delta\left(r_{1}-r_{2}\right)\left(\sigma_{1} \cdot k\right)\right. & & \text { but may simulate the monopole } \\
& \left.-\frac{1}{3}\left(\sigma_{1} \cdot \sigma_{2}\right)\left[k^{\prime} \cdot \delta\left(r_{1}-r_{2}\right) k\right]\right\}, & \text { (1) of the tensor shown below, } & \begin{array}{l}
\text { picking up differences in relative } \\
\text { momenta. }
\end{array} \tag{1}
\end{align*}
$$

large relative momentum

small relative momentum

repulsive

Outline

1. Introduction
2. Shell model and monopole interaction
3. Shell evolution and tensor force
4. Multiple quantum liquid in exotic nuclei
5. Shell evolution and three-nucleon force
6. Monte Carlo Shell Model
7. Summary

Single-Particle Energy for Oxygen isotopes

by microscopic eff. int.
G-matrix+ core-pol. : Kuo, Brown
$V_{\text {low-k }}$: Bogner, Kuo, Schwenk
by phenomenological eff. int.

- G-matrix + fit -

SDPF-M

Utsuno, O., Mizusaki, Honma,
Phys. Rev. C 60, 054315 (1999)
USD-B

Brown and Richter,
Phys. Rev. C 74, 034315 (2006)

What is the origin of
the repulsive modification of

$T=1$ monopole matrix elements ?

The same puzzle as in the pf shell
A solution within bare 2-body interaction is very unlikely
(considering efforts made so far) Zuker, Phys. Rev. Lett. 90, 042502 (2003)
\rightarrow 3-body interaction

The clue : Fujita-Miyazawa 3 N mechanism (Δ-hole excitation)

Progress of Theoretical Physics, Vol. 17, No. 3, March 1957

Pion Theory of Three-Body Forces
Jun-ichi FUJITA and Hironari MIYAZAWA

> | Δ particle |
| :---: |
| $\mathrm{m}=1232 \mathrm{MeV}$ |
| $\mathrm{S}=3 / 2, \mathrm{I}=3 / 2$ |

Oset, Toki and Weise Pionic modes of excitation Phys. Rep. 83, 281 (1982)

Renormalization of NN interaction due to Δ excitation in the intermediate state

Pauli blocking effect on the renormalization of single-particle energy

Renormalization of
single particle energy due to
Δ-hole excitation
\rightarrow more binding (attractive)

Pauli Forbidden
\rightarrow The effect is suppressed

Inclusion of Pauli blocking

Pauli forbidden
(from previous page)
This Pauli effect is included automatically by the exchange term.

Most important message with Fujita-Miyazawa 3NF

(i) Δ-hole excitation in a conventional way

(c) 3-body interaction

(ii) EFT with Δ

TO et al., PRL 105, 032501 (2010)

Ground-state energies of
TO et al., PRL 105, 032501 (2010) oxygen isotopes

NN force + 3N-induced NN force (Fujita-Miyazawa force)

Conventional calculation with $\pi \mathrm{N} \Delta$ coupling

 π exchange with radial cut-off at $0.5 \mathrm{fm}, \Delta E=293 \mathrm{MeV}$$$
f _\{\pi N \Delta\} / f _\{\pi N N\}=\ \operatorname{sqrt}\{9 / 2\}
$$

A.M. Green, Rep. Prog. Phys. 39, 1109 (1976)

Low-momentum 3N interactions

from leading N^{2} LO chiral EFT $\sim(\mathrm{Q} / \Lambda)^{3}$ van Kolck (1994), Epelbaum et al. (2002)

c_{i} from $\pi \mathrm{N}$, consistent with $\mathrm{NN} \quad c_{1}=-0.9_{-0.5}^{+0.2}, c_{3}=-4.7_{-1.0}^{+1.2}, c_{4}=3.5_{-0.2}^{+0.5}$ Meissner (2007)
$\mathrm{c}_{3}, \mathrm{c}_{4}$ important for structure, large uncertainties at present
NN for smooth cutoff $V_{\text {low k }}$ (n _exp $=4$) from $N^{3} L O(500)$
D, E terms fitted to $\mathrm{E}(3 \mathrm{H})$ and radius $(4 \mathrm{He})$

$\mathrm{Ne}-\mathrm{Mg}-\mathrm{Si}$ in the sd-pf shell Prototype of future shell-model calculation

New \& preliminary
Chiral N3LO NN interaction

+ EKK (Extended Kuo-Krenciglowa) method
+ three-body Fujita-Miyazawa force

In preparation, Tsunoda, Shimizu, Otsuka, H.-Jensen, Takayanagi, and Suzuki

Ca isotopes
Nuclear Structure and Dynamics 2012 Proceedings, Suzuki, Otsuka and Honma

2 MeV enlargement of full shell height (anti-quenching)

3-body forces does produce another shell evolution

Ca isotopes

Neutron single-particle energy of Ca isotopes

Three-body force reduces
$f_{5 / 2}-p_{1 / 2}$ gap by pushing up $p_{1 / 2}$

G-matrix
$3^{\text {rd }}$ order Q-box 24 hw int. states
3NF : Fujita-Miyazawa
Nuclear Structure and Dynamics 2012
Proceedings, Suzuki, Otsuka and Honma

Three-body forces and shell structure in calcium

isotopes Jason D Holt ${ }^{1,2}$, Takaharu Otsuka ${ }^{3,4}$, Achim Schwenk ${ }^{5,6}$ and Toshio Suzuki ${ }^{7}$

Ground-state energy of Ca isotopes

Continuum-coupled shell model (CCSM)

approximated by Gaussian

basis state-vector (denoted by j): bound states + discretized continuum states wall very far (3000 fm, ~3000 basis states)

included

$$
\begin{gathered}
\hat{V}(r)=\sum_{i=1,2} g_{i}\left(1+a_{i} \sigma \cdot \sigma\right) e^{-r^{2} / d_{i}^{2}} \\
d_{1,2}=1.4,0.7 \mathrm{fm}
\end{gathered}
$$

SDPF-M TBME = TBME of this $V(r)$ for HO wave functions

$$
\begin{aligned}
& \left\langle 1 s_{1 / 2} 0 d_{3 / 2}\right| V\left|1 s_{1 / 2} 0 d_{3 / 2}\right\rangle_{J=1,2} \\
& \left\langle 0 d_{3 / 2} 0 d_{3 / 2}\right| V\left|0 d_{3 / 2} 0 d_{3 / 2}\right\rangle_{J=0,2}
\end{aligned}
$$

under the assumption that 3-body force effect is included in SDPF-M interaction effectively
$V(r)$ is fixed only by interaction
$240=220+2 n$ in the space
ground state : $2 n$ in $1 s_{1 / 2}$
excited states of 1^{+}and 2^{+}:

$$
\left|i J^{+}\right\rangle=\left|1 s_{1 / 2} \otimes \frac{i d_{3 / 2}}{} \cdot J^{+}\right\rangle
$$

discretized continuum $\operatorname{id}_{3 / 2}(i=1,2, \ldots)$
$1 \mathrm{~s}_{1 / 2}$: solution of Woods-Saxon potential with observed S_{n}
diagonalize H
Eigenfunction: $\left|J_{k}^{+}\right\rangle=\sum_{i} c_{i}^{(J, k)}\left|i J^{+}\right\rangle$

RMS Radius: ${ }^{16-24} \mathrm{O}$

Exp: Ozawa et al., Nucl. Phys. A693, 32 (2001) Kanungo et al., Phys. Rev. C84, 061304 (2011)

Removal of one proton and one neutron from ${ }^{26} \mathrm{~F}$

Doorway state -> doorway-state resonance

E1 excitation

nucleon transfer (proton removal)

Low-lying Continuum Spectra in ${ }^{24,25} \mathrm{O}$

doorway-state resonance

Doorway state ==> continuum states in ${ }^{24} \mathrm{O}$ $p_{k}^{J}=\left|\left\langle J_{k}^{+} \mid \Phi_{\text {doorway }}\right\rangle\right|^{2}=\left|\sum_{i} C_{i}^{(k)}\left\langle i d_{3 / 2} \mid 0 d_{3 / 2}\right\rangle\right|^{2}$

- bound approximation:

Normal shell model with the same Hamiltonian : NO continuum effect

- CCSM : With continuum effect incl. residual interaction
- no int. : With continuum effect but no residual interaction.
- Continuum effect is about 1 MeV
- No bound excited state.
- $1^{+}-2^{+}$splitting by 2 -body interaction
- $1^{+}-2^{+}$splitting is in good agreement with experiments.

Peak Energies of neutron emission

Lowering due to continuum effect

SPE as bound state

Exp. :MSU (Hoffman et al), RIKEN (Elekes et al)

Continuum spectra are consistent with the shell evolution

Oxygen isotopes \square
Fluorine isotopes

Neutron single-particle energies at $N=20$ for $Z=8 \sim 20$
solid line : full (central + tensor) dashed line : central only

A proton in $\mathrm{d}_{5 / 2}$ moves neutron orbits by
$d_{3 / 2} \quad-2.0 \mathrm{MeV}$
$\mathrm{s}_{1 / 2} \quad-1.1 \mathrm{MeV}$
$d_{5 / 2} \quad-1.6 \mathrm{MeV}$
${ }^{29} \mathrm{~F}$ well bound already by s. p.e.
${ }^{31, \ldots}$ F bound through mixing with pf shell

Outline

1. Introduction
2. Shell model and monopole interaction
3. Shell evolution and tensor force
4. Multiple quantum liquid in exotic nuclei
5. Shell evolution and three-nucleon force
6. Monte Carlo Shell Model
7. Summary

70台のAlphaServer DS20をMyrinetて高速に並列結合し，最大のパラレル処理 パフォーマンスを発揮するAlphleet

理化学研究所

クラスタ化した70台（140CPU）のAlphaServerとCompaq Tru64 UNIXが高い並列垷理バフォーマンスを実現し，ビックバン以降の原子校の摘造解明を推進

Major outcome

PHYSICAL REVIEW C，VOLUME 60， 054315
Varying shell gap and deformation in $\mathbf{N \sim 2 0}$ unstable nuclei studied by the Monte Carlo shell model

Yutaka Utsumo，${ }^{1,2}$ Takaharu Otsuka，${ }^{1,2}$ Takahiro Mizusaki，${ }^{1}$ and Michio Honma ${ }^{3}$ Computations have been carried out partly by the Alphleet computer system of RIKEN．

Physics Letters B 346 （1995）9－14

Large deformation of the very neutron－rich nucleus ${ }^{32} \mathrm{Mg}$ from intermediate－energy Coulomb excitation
T．Motobayashi ${ }^{\text {a，1 }}$ ，Y．Ikeda ${ }^{\text {a }}$ ，Y．Ando ${ }^{\text {a }}$ ，K． Ieki $^{\text {a }}$ ，M．Inoue ${ }^{\text {a }}$ ，N．Iwasa ${ }^{\text {a }}$ ，T．Kikuchi ${ }^{\text {a }}$ ， M．Kurokawa ${ }^{\text {a }}$ ，S．Moriya ${ }^{\text {a }}$ ，S．Ogawa ${ }^{\text {a }}$ ，H．Murakami ${ }^{\text {a }}$ ，S．Shimoura ${ }^{\text {a }}$ ，Y．Yanagisawa ${ }^{\text {a }}$ ，
T．Nakamura ${ }^{\text {b }}$ ，Y．Watanabe ${ }^{\text {b }}$ ，M．Ishihara ${ }^{\text {b．c }}$ ，T．Teranishi ${ }^{\text {c }}$ ，II．Okuno ${ }^{\text {c }}$ ，R．F．Casten ${ }^{\text {d }}$

Present status

Advanced MCSM

РТЕР

New-generation Monte Carlo shell model for the K computer era

Noritaka Shimizu, ${ }^{1, *}$, Takashi Abe ${ }^{1}$, Yusuke Tsunoda ${ }^{2}$, Yutaka Utsuno ${ }^{3}$, Tooru Yoshida ${ }^{1}$, Takahiro Mizusaki ${ }^{4}$, Michio Honma ${ }^{5}$, and Takaharu Otsuka ${ }^{1,2,6}$

Project HPCI Strategic Programs for Innovative Research (SPIRE) Field 5 "The origin of matter and the universe"

Large-scale calculations

Outline

- Methodology: advanced Monte Carlo shell model (MCSM)
- intrinsic shape can be the objectives
- ab initio (no core) MCSM and clustering in Be isotopes
- Shape coexistence and Quantum Liquid picture
- exotic Ni isotopes (+ Co, Cu)
- Shape evolution (from seniority to rotor)
- Xe and Ba isotopes
- Extension: Spectra to high-lying collective states
- E1 excitation, GDR and PDR in Ca and Sr isotopes
- Level density with shell model Hamiltonian

Advanced Monte Carlo shell model (MCSM)

Superposition of the projected Slater determinants

+ Extrapolation by energy variance

$$
\left.|\Psi\rangle=\sum_{k=1}^{N_{M C S M}} f_{k} P^{J, \pi}\left|\phi_{k}\right\rangle \quad\left|\phi_{k}\right\rangle=\prod_{\alpha=1}^{N}\left(\sum_{i=1}^{N_{s p}} c_{i}^{\dagger} D_{i \alpha}^{(k)}\right)-\right\rangle
$$

MCSM basis, deformed Slater det.

Step 3: Energy variance extrapolation

Systematic calculations in terms of

ab initio Monte Carlo Shell Model

 with JISP-16 interaction

Extrapolation to infinite model space is included.

MCSM: same as present
NCSM:
No-core shell model with JISP-16
T. Abe, P. Maris, et al. PRC 86, 054301 (2012)

GFMC
AV18 + IL7
J. Carlson, et al., arXiv:1412.3081 (2014).
T. Yoshida, T. Abe et al.

JISP-16 interaction used
Matter density of the ground state $J^{\pi}=0^{+}$of ${ }^{8} \mathrm{Be}$

Matter density of Be isotopes

Alignment of each basis state (Slater determinant)

Before the alignment; orientations are random

All basis states are aligned \rightarrow "intrinsic state"

Outline

- Methodology: advanced Monte Carlo shell model (MCSM)
- intrinsic shape can be the objectives
- ab initio (no core) MCSM and clustering in Be isotopes
- Shape coexistence and Quantum Liquid picture
- exotic Ni isotopes (+ Co, Cu)
- Shape evolution (from seniority to rotor)
- Xe and Ba isotopes
- Extension: Spectra to high-lying collective states
- E1 excitation, GDR and PDR in Ca and Sr isotopes
- Level density with shell model Hamiltonian

MCSM calculation on Ni isotopes

Y. Tsunoda et

This model space is wide enough to discuss how magic numbers 28,50 and semi-magic number 40 are visible or smeared out.

Interaction:
A3DA interaction is used with minor corrections

Energy levels and $\mathrm{B}(\mathrm{E} 2)$ values of Ni isotopes

Description by the same Hamiltonian

MCSM basis vectors on Potential Energy Surface

$$
\text { eigenstate } \Psi=\sum_{i} c_{i} P\left[J^{\pi}\right] \Phi_{i} \longleftarrow \text { Slater determinant } \rightarrow \text { intrinsic shape }
$$

- PES is calculated by CHF for the shellmodel Hamiltonian
- Location of circle : quadrupole deformation of unprojected MCSM basis vectors
- Area of circle : overlap probability between each projected basis and eigen wave function

Called T-plot in reference to
Y. Tsunoda, TO, Shimizu, Honma and Utsuno, PRC 89, 031301 (R) (2014)

General properties of T-plot:
Certain number of large circles in a small region of PES
\Leftrightarrow pairing correlations
Spreading beyond this can be due to shape fluctuation
Example : shape assignment to various 0^{+}states of ${ }^{68} \mathrm{Ni}$

${ }^{68} \mathrm{Ni} \mathrm{O}^{+}$states

occupation numbers

ESPE

effective single-particle energies (ESPE) for correlated eigenstate
$\epsilon_{j}=\left\langle\frac{\partial H_{m}}{\partial n_{j}}\right\rangle$
H_{m} monopole part of H
< > : by actual occup. numbers

shell gap (spherical)

configurations $=$ shapes
determined self-consistently and non-linearly

Type II Shell Evolution
shell evolution within the same nucleus driven by the tensor force

Spherical shell gap is not changed in Nilsson model

Number of protons and neutrons excited across $\mathrm{Z}=28$ or $\mathrm{N}=40$ magic numbers

- proton $2+2$
- neutron 2+_2
- total 2+_2

Underlying mechanism of the appearance of low-lying deformed states: Type II Shell Evolution

Cu isotopes

- proton $\mathrm{p}_{3 / 2}-\mathrm{f}_{5 / 2}$ level crossing from $N=40$ to $N=50$ (type I shell evolution)
- Calculated states show agreement with experiments, although they are not pure single-particle states.

Shape coexistence of ${ }^{70} \mathrm{Co}(\mathrm{Z}=27, \mathrm{~N}=43)$

g.s. and an isomer in ${ }^{70} \mathrm{Co}$ are known experimentally (PRC 61, 054308 (2000))
High-spin state ($6^{-}, 7^{-}$)
$\pi f_{7 / 2}^{-1} \nu g_{9 / 2}^{+3}$
and Low-spin state $\left(3^{+}\right)$
$\pi f_{7 / 2}^{-1} \nu p_{1 / 2}^{-1} \nu g_{9 / 2}^{+4}$
were suggested

From our calculations,
High-spin state (7^{-}) is near-spherical
Low-spin state $\left(1^{+}\right)$is prolate deformed
 In the prolate state 1^{+}, many nucleons are excited
~ 2.7 protons above $\mathrm{Z}=28$ gap
~ 3.1 neutron holes below $\mathrm{N}=40$ gap


```
*8Ni- 利Cu v.s. }\mp@subsup{}{}{78}\textrm{Ni}-\mp@subsup{}{}{79}\textrm{Cu
```


T-plot of ground state

- Similar distribution patterns between Ni and Cu , while Cu is somewhat more deformed
- Shape fluctuations are larger in $\mathrm{N}=50$ isotones

Outline

- Methodology: advanced Monte Carlo shell model (MCSM)
- intrinsic shape can be the objectives
- ab initio (no core) MCSM and clustering in Be isotopes
- Shape coexistence and Quantum Liquid picture
- exotic Ni isotopes (+ Co, Cu)
- Shape evolution (from seniority to rotor)
- Xe and Ba isotopes
- Extension: Spectra to high-lying collective states
- E1 excitation, GDR and PDR in Ca and Sr isotopes
- Level density with shell model Hamiltonian

Shape evolution of Xe isotopes

$P+Q Q$ int.
model space: $50<N, Z<82$

symbol: exp.

line: theory

Shape evolution of Ba isotopes

P+QQ int. model space:
50<N,Z<82

MCSM w.f.

$$
|\Psi\rangle=" \sum_{n}
$$

PES by Q-constraint HFB calc. for the SM Hamiltonian Location of circle : quadrupole deformation of $\left|\phi_{k}\right\rangle$ Area of circle : overlap probability with the eigenstate

Outline

- Methodology: advanced Monte Carlo shell model (MCSM)
- intrinsic shape can be the objectives
- ab initio (no core) MCSM and clustering in Be isotopes
- Shape coexistence and Quantum Liquid picture
- exotic Ni isotopes (+ Co, Cu)
- Shape evolution (seniority to rotor)
- Xe and Ba isotopes
- Extension: Spectra to high-lying collective states
- E1 excitation, GDR and PDR in Ca and Sr isotopes

E1 excitation of Ca isotopes in (conventional) LSSM

NS, Y. Utsuno, S. Ebata, T. Otsuka, M. Honma and T. Mizusaki, in preparation
$1 \mathrm{hw} / 3 \mathrm{hw}$ sd-pf-sdg shell calculations for negative-parity states of Ca isotopes Photo-absorption cross section of ${ }^{48} \mathrm{Ca}$

M-scheme shell-model code "KSHELL" by Lanczos method on massive parallel computer

1hw : upto 1hw excitation in sd-pf-sdg shell $4.1 \times 10^{6} \mathrm{M}$-scheme dim. at PC
(1+3)hw: up to 3hw excitation in sd-pf-sdg shell $1.2 \times 10^{10} \mathrm{M}$-scheme dim. at supercomputer

$B(E 1)$ sum rule by Monte Carlo shell model $\mathrm{N}_{\max } \hbar \omega$ configuration

E1 sum rule from fully correlated ground state wave function

- ${ }^{48} \mathrm{Ca} \quad \mathrm{B}(\mathrm{E} 1)$ sum rule $\left(\mathrm{e}^{2} \mathrm{fm}{ }^{2}\right)$
$\begin{array}{ll}-1 \hbar \omega & \ldots 16.5 \\ -(1+3) \hbar \omega & \ldots .13 .6 \\ - \text { MCSM 50dim. ... } 10.1\end{array} \llbracket \rrbracket \begin{aligned} & -18 \% \\ & -38 \%\end{aligned}$
- ${ }^{51} \mathrm{~V} \quad \mathrm{~B}(\mathrm{E} 1)$ sum rule $\left(\mathrm{e}^{2 \mathrm{fm}}{ }^{2}\right)$
$\begin{array}{ll}-1 \hbar \omega & \ldots \\ -(1+3) \hbar \omega & \ldots \\ - \text { NCSM } 50 \mathrm{dim} & \ldots \\ -12.4\end{array} \|-32 \%$
Many-body correlations reduces $B(E 1)$ sum rule

E1 excitation spectrum can be calculated by MCSM

Ground state:

$$
|\Psi\rangle=\sum_{\substack{k=1 \\ \text { Basis vector } \\ \text { of the }}}^{N_{k} P^{J, \pi}\left|\varphi_{k}\right\rangle}
$$

Basis vectors for $E 1$ spectrum (a, b, c, d, \ldots : orbits) $\exp (i \varepsilon \cdot E 1(a \rightarrow b))\left|\varphi_{k}\right\rangle, \exp (i \varepsilon \cdot E 1(c \rightarrow d))\left|\varphi_{k}\right\rangle, \ldots(k=1,2, \ldots)$

These are still Slater determinants

Additional bases for fine tuning : variation for energy average by the conjugate gradient

$$
\left|\varphi_{k}(E 1(a \rightarrow b))^{V a r}\right\rangle, \quad\left|\varphi_{k}(E 1(c \rightarrow d))^{V a r}\right\rangle, \cdots
$$

The global feature of excitation spectrum can be calculated.

Diagonalization with these basis vectors after projection to 1^{-}

E1 spectrum with ~3000 levels connected somehow to the g.s. (confirmed by E1 sum rule)

E1 excitation spectrum by MCSM
Photoabsorption cross section of ${ }^{88} \mathrm{Sr},{ }^{90} \mathrm{Sr}$

Application to the nuclear transmutation
for the purpose of nuclear waste processing (ex. ${ }^{90} \mathrm{Sr}$ LLFP) as basic data for nuclear technology

Perspectives

1. $A b$ initio at the level of shell-model Hamiltonian based on EKK method (for multi-shells) tensor + 3NF inclusive
2. Variety of magic nuclei (magic index)
3. Quantum liquid - single or dual implications?
4. Shell evolution in continuum and doorway-state resonance - reminiscence of bound states -
5. Shapes and clusters by MCSM
6. Excitation spectrum by MCSM and their application to astrophysics, nuclear energy, etc.

Collaborators

HPCI project, Field 5

- Takashi Abe (Tokyo)
- Shuichiro Ebata (Hokkaido)
- Michio Honma (Aizu)
- Yoritaka Iwata (CNS, Tokyo)
- Takahiro Mizusaki (Senshu Univ.)
- Noritaka Shimuzu (CNS, Tokyo)
- Tomoaki Togashi (CNS, Tokyo)
- Naofumi Tsunoda (CNS, Tokyo)
- Yusuke Tsunoda (CNS, Tokyo)
- Yutaka Utsuno (JAEA)
- Tooru Yoshida (CNS, Tokyo)
- James Vary (Iowa)
- Pieter Maris (Iowa)

END

ご清㯖ありがとうございました

