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Negative squared
4-momentum transfer to the target
Fractional energy of the virtual photon
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Inclusive DIS

Only basic symmetry arguments/
conservation laws: Gauge/Lorentz 

invariance, parity conservation
No other assumption!

Parton model: 
Fi     ➾  Σp parton distributions
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2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
transverse and longitudinal nucleon polarisation

transverse and longitudinal quark polarisation

Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)⇥ℑ[A+�,�+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|Λ�Λ⇤| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum

9

transverse   longitudinal

nucleon spin

parton spin

PDFs Leading Twist Table
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2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.

8
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TABLE IV: Truncated first moments, ∆f1,[0.001→1]
i , and full ones, ∆f1

i , of our polarized PDFs at various Q2.

x-range in Eq. (35) Q2 [GeV2] ∆u + ∆ū ∆d + ∆d̄ ∆ū ∆d̄ ∆s̄ ∆g ∆Σ
0.001-1.0 1 0.809 -0.417 0.034 -0.089 -0.006 -0.118 0.381

4 0.798 -0.417 0.030 -0.090 -0.006 -0.035 0.369
10 0.793 -0.416 0.028 -0.089 -0.006 0.013 0.366
100 0.785 -0.412 0.026 -0.088 -0.005 0.117 0.363

0.0-1.0 1 0.817 -0.453 0.037 -0.112 -0.055 -0.118 0.255
4 0.814 -0.456 0.036 -0.114 -0.056 -0.096 0.245
10 0.813 -0.458 0.036 -0.115 -0.057 -0.084 0.242
100 0.812 -0.459 0.036 -0.116 -0.058 -0.058 0.238
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FIG. 3: Our polarized PDFs of the proton at Q2 = 10 GeV2

in the MS scheme, along with their ∆χ2 = 1 uncertainty
bands computed with Lagrange multipliers and the improved
Hessian approach, as described in the text.

tendency to turn towards +1 at high x. The latter be-
havior would be expected for the pQCD based models.
We note that it has recently been argued [73] that the
upturn of Rd in such models could set in only at rela-
tively high x, due to the presence of valence Fock states of
the nucleon with nonzero orbital angular momentum that
produce double-logarithmic contributions ∼ ln2(1−x) in
the limit of x → 1 on top of the nominal power behav-
ior. The corresponding expectation is also shown in the
figure. In contrast to this, relativistic constituent quark
models predict Rd to tend to −1/3 as x → 1, perfectly

AπALL
0

pT [GeV]

Δχ2=1 (Lagr. multiplier)
Δχ2=1 (Hessian)

-0.004

-0.002

0

0.002

0.004

2 4 6 8

FIG. 4: Uncertainties of the calculated Aπ0

LL at RHIC in our
global fit, computed using both the Lagrange multiplier and
the Hessian matrix techniques. We also show the correspond-
ing PHENIX data [23].

consistent with the present data.

Light sea quark polarizations: The light sea quark and
anti-quark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10, 14, 15, 16] and of the new
set of fragmentation functions [37] that describes the ob-
servables well in the unpolarized case. Figure 6 shows the
changes in χ2 of the fit as functions of the truncated first
moments ∆ū1,[0.001→1], ∆d̄1,[0.001→1] defined in Eq. (35),
obtained for the Lagrange multiplier method. On the
left-hand-side, Figs. 6 (a), (c), we show the effect on the
total χ2, as well as on the χ2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in χ2. On the r.h.s. of
the plot, Figs. 6 (b), (d), we further split up ∆χ2 from
SIDIS into contributions associated with the spin asym-
metries in charged pion, kaon, and unidentified hadron
production. One can see that the latter dominate, closely
followed by the pions. The kaons have negligible impact
here. For ∆ū1,[0.001→1], charged hadrons and pions are
very consistent, as far as the location of the minimum
in χ2 is concerned. For ∆d̄1,[0.001→1] there is some slight
tension between them, although it is within the tolerance

2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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TABLE IV: Truncated first moments, ∆f1,[0.001→1]
i , and full ones, ∆f1
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in the MS scheme, along with their ∆χ2 = 1 uncertainty
bands computed with Lagrange multipliers and the improved
Hessian approach, as described in the text.

tendency to turn towards +1 at high x. The latter be-
havior would be expected for the pQCD based models.
We note that it has recently been argued [73] that the
upturn of Rd in such models could set in only at rela-
tively high x, due to the presence of valence Fock states of
the nucleon with nonzero orbital angular momentum that
produce double-logarithmic contributions ∼ ln2(1−x) in
the limit of x → 1 on top of the nominal power behav-
ior. The corresponding expectation is also shown in the
figure. In contrast to this, relativistic constituent quark
models predict Rd to tend to −1/3 as x → 1, perfectly
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FIG. 4: Uncertainties of the calculated Aπ0

LL at RHIC in our
global fit, computed using both the Lagrange multiplier and
the Hessian matrix techniques. We also show the correspond-
ing PHENIX data [23].

consistent with the present data.

Light sea quark polarizations: The light sea quark and
anti-quark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10, 14, 15, 16] and of the new
set of fragmentation functions [37] that describes the ob-
servables well in the unpolarized case. Figure 6 shows the
changes in χ2 of the fit as functions of the truncated first
moments ∆ū1,[0.001→1], ∆d̄1,[0.001→1] defined in Eq. (35),
obtained for the Lagrange multiplier method. On the
left-hand-side, Figs. 6 (a), (c), we show the effect on the
total χ2, as well as on the χ2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in χ2. On the r.h.s. of
the plot, Figs. 6 (b), (d), we further split up ∆χ2 from
SIDIS into contributions associated with the spin asym-
metries in charged pion, kaon, and unidentified hadron
production. One can see that the latter dominate, closely
followed by the pions. The kaons have negligible impact
here. For ∆ū1,[0.001→1], charged hadrons and pions are
very consistent, as far as the location of the minimum
in χ2 is concerned. For ∆d̄1,[0.001→1] there is some slight
tension between them, although it is within the tolerance

2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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TABLE IV: Truncated first moments, ∆f1,[0.001→1]
i , and full ones, ∆f1

i , of our polarized PDFs at various Q2.

x-range in Eq. (35) Q2 [GeV2] ∆u + ∆ū ∆d + ∆d̄ ∆ū ∆d̄ ∆s̄ ∆g ∆Σ
0.001-1.0 1 0.809 -0.417 0.034 -0.089 -0.006 -0.118 0.381

4 0.798 -0.417 0.030 -0.090 -0.006 -0.035 0.369
10 0.793 -0.416 0.028 -0.089 -0.006 0.013 0.366
100 0.785 -0.412 0.026 -0.088 -0.005 0.117 0.363

0.0-1.0 1 0.817 -0.453 0.037 -0.112 -0.055 -0.118 0.255
4 0.814 -0.456 0.036 -0.114 -0.056 -0.096 0.245
10 0.813 -0.458 0.036 -0.115 -0.057 -0.084 0.242
100 0.812 -0.459 0.036 -0.116 -0.058 -0.058 0.238
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in the MS scheme, along with their ∆χ2 = 1 uncertainty
bands computed with Lagrange multipliers and the improved
Hessian approach, as described in the text.

tendency to turn towards +1 at high x. The latter be-
havior would be expected for the pQCD based models.
We note that it has recently been argued [73] that the
upturn of Rd in such models could set in only at rela-
tively high x, due to the presence of valence Fock states of
the nucleon with nonzero orbital angular momentum that
produce double-logarithmic contributions ∼ ln2(1−x) in
the limit of x → 1 on top of the nominal power behav-
ior. The corresponding expectation is also shown in the
figure. In contrast to this, relativistic constituent quark
models predict Rd to tend to −1/3 as x → 1, perfectly
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consistent with the present data.

Light sea quark polarizations: The light sea quark and
anti-quark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10, 14, 15, 16] and of the new
set of fragmentation functions [37] that describes the ob-
servables well in the unpolarized case. Figure 6 shows the
changes in χ2 of the fit as functions of the truncated first
moments ∆ū1,[0.001→1], ∆d̄1,[0.001→1] defined in Eq. (35),
obtained for the Lagrange multiplier method. On the
left-hand-side, Figs. 6 (a), (c), we show the effect on the
total χ2, as well as on the χ2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in χ2. On the r.h.s. of
the plot, Figs. 6 (b), (d), we further split up ∆χ2 from
SIDIS into contributions associated with the spin asym-
metries in charged pion, kaon, and unidentified hadron
production. One can see that the latter dominate, closely
followed by the pions. The kaons have negligible impact
here. For ∆ū1,[0.001→1], charged hadrons and pions are
very consistent, as far as the location of the minimum
in χ2 is concerned. For ∆d̄1,[0.001→1] there is some slight
tension between them, although it is within the tolerance
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2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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Transversity distribution
Collinear case

2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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Transversity distribution
Collinear case

2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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Transversity distribution
Collinear case

2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
transverse and longitudinal nucleon polarisation

transverse and longitudinal quark polarisation

Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)⇥ℑ[A+�,�+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|Λ�Λ⇤| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum

9

transverse   longitudinal
nucleon spin

parton spin
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2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
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Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)⇥ℑ[A+�,�+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|Λ�Λ⇤| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum

9
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4. The measurement of transverse SSA

The observation of transverse single-spin asymmetries at the HERMES experiment provides sig-
nals for transverse-momentum dependent quark distribution and fragmentation functions such as the
transversity and Sivers distributions and the Collins fragmentation function. In this chapter a Fourier
analysis of transverse single-spin asymmetries for semi-inclusive electroproduction of p-mesons and
charged K-mesons on a transversely nuclear-polarised hydrogen target is presented.
Transverse single-spin asymmetries AhU? for some hadron type h and using an unpolarised lepton

beam (U) are defined as the difference of the transverse-target (?) spin-dependent cross sections
s

h
U* and s

h
U+ for semi-inclusive electro-production of hadrons, normalised to the sum of these cross

sections:

AhU? =
s

h
U* �s

h
U+

s

h
U*+s

h
U+

. (4.1)

In an experiment, the transverse target spin orientation, denoted as“*” and “+”, is aligned perpen-
dicular to the lepton beam direction. Hence, the notation AhU? is used for the measured transverse
single-spin asymmetries in contrast to the notation AhUT, applied in theoretical works, where the
transverse target spin orientation is aligned perpendicular to the direction of the virtual photon.
Transverse single-spin asymmetries depend on the azimuthal angle fS of the target spin axis and

the azimuthal angle f of the produced hadron (figure 2.4). A decomposition in terms of Fourier
components in these azimuthal angles provides signals for the various contributions to the transverse
target spin-dependent cross-section, e.g., for the 2hsin(f +fS)iU? Fourier component of the Collins
mechanism and the 2hsin(f �fS)iU? Fourier component of the Sivers mechanism. The Fourier
components, in the following denoted also as single-spin asymmetries amplitudes, are extracted
using a maximum likelihood fit, alternately binned in the Bjorken scaling variable x, the fractional
hadron energy z and the transverse hadron momentum |Ph?| but unbinned in the f and fS.
The estimate of the systematic uncertainties and the interpretation of the extracted SSA amplitudes

are presented in the subsequent chapters 5 and 6. In this chapter, the semi-inclusive measurement of
the deep-inelastic scattering process on a transversely polarised proton target is described (section
4.1) and the Fourier analysis of the transverse single-spin asymmetries is explained (section 4.2).

4.1. The semi-inclusive measurement of the DIS process

Events from deep-inelastic scattering on a transversely nuclear-polarised hydrogen target were re-
corded with a positron beam in the running period 2002–2004 and with an electron beam in the year
2005. For the measurement of the transverse single-spin asymmetries AhU? the data sets of the single
years 2002, 2003, 2004 and 2005 are combined using well-understood data productions, labelled as
02c1, 03c1, 04c1 and 05c2 according to the HERMES convention. Studies of the compatibility
of the recorded data are summarised in section 4.1.7.2. At first the selection of deep-inelastic scat-
tering events according to data quality criteria (section 4.1.1), requirements on the track geometry
(sections 4.1.2 and 4.1.3), the particle identification (sections 4.1.4 – 4.1.6) and the requirements on
the event kinematics (section 4.1.7) are presented.
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and a similar formula for the cos(φ1 + φ2) modulation
amplitude a12. The interference fragmentation function
H<),q

1 of a quark q ( and charge eq) , and its polarization-
independent counterpart Dq

1, depend on the fractional

energy zα
CMS
= 2Eα/

√
s of the hadron pair in hemisphere

α and on its invariant mass mα. The CMS energy is
denoted by

√
s and the polar angle θ is defined between

the lepton axis and the reference axis in the CMS. As the
polar angular dependence is a clear indication of initial
transverse quark polarization, its asymmetry dependence
was studied.
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FIG. 1: Azimuthal angle definitions for φ1 and φ2 as defined
relative to the thrust axis in the CMS.

Collins and Ladinsky[14] used the linear sigma model
to make the first predictions for π-π correlations. An-
other approach makes use of a partial wave analysis to
arrive at predictions for H!

1 , which receives essential con-
tributions from the interference of meson pairs (pions and
kaons) in relative S- and P-wave states [15, 16]. A strong
dependence on the invariant mass of the hadron pair is
predicted. Predictions for spin effects that can be ob-
served at the B-factories can be found in papers by Jaffe,
Jin and Tang [17] and Radici, Jakob and Bianconi [18],
with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
estimate the final-state interactions of the meson pairs
from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h

|
. (3)

The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
the thrust axis lie also within this acceptance. For this
purpose only events with a thrust axis pointing into the

h1 ⇥

IFF amplitudes
[Airapetian et al., JHEP 0806:017, 2008]

𝜋+𝜋-

29



Francesca Giordano

Bacchetta, Radici, Courtoy 
Phys.Rev.Lett.107:012001,2011

AUT /

3

a12R(z1, z1,m
2
1,m

2
2) ∝

1

2

sin2 θ

1 + cos2 θ

⎡

⎣

∑

q,q

e2q z21z
2
2 H<) q

1 (z1,m
2
1) H

<) q
1 (z2,m

2
2)

⎤

⎦

×

⎡

⎣

∑

q,q

e2q z
2
1 z

2
2 Dq

1(z1,m
2
1) D

q
1(z2,m

2
2)

⎤

⎦

−1

, (2)

and a similar formula for the cos(φ1 + φ2) modulation
amplitude a12. The interference fragmentation function
H<),q

1 of a quark q ( and charge eq) , and its polarization-
independent counterpart Dq

1, depend on the fractional

energy zα
CMS
= 2Eα/

√
s of the hadron pair in hemisphere

α and on its invariant mass mα. The CMS energy is
denoted by

√
s and the polar angle θ is defined between

the lepton axis and the reference axis in the CMS. As the
polar angular dependence is a clear indication of initial
transverse quark polarization, its asymmetry dependence
was studied.

Ph1
R1 Ph1 + Ph2

π − φ1

Ph3

φ2 − π

Thrust axis n̂

e−

e+

Ph2

Ph4

FIG. 1: Azimuthal angle definitions for φ1 and φ2 as defined
relative to the thrust axis in the CMS.

Collins and Ladinsky[14] used the linear sigma model
to make the first predictions for π-π correlations. An-
other approach makes use of a partial wave analysis to
arrive at predictions for H!

1 , which receives essential con-
tributions from the interference of meson pairs (pions and
kaons) in relative S- and P-wave states [15, 16]. A strong
dependence on the invariant mass of the hadron pair is
predicted. Predictions for spin effects that can be ob-
served at the B-factories can be found in papers by Jaffe,
Jin and Tang [17] and Radici, Jakob and Bianconi [18],
with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
estimate the final-state interactions of the meson pairs
from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h

|
. (3)

The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
the thrust axis lie also within this acceptance. For this
purpose only events with a thrust axis pointing into the
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Collins and Ladinsky[14] used the linear sigma model
to make the first predictions for π-π correlations. An-
other approach makes use of a partial wave analysis to
arrive at predictions for H!

1 , which receives essential con-
tributions from the interference of meson pairs (pions and
kaons) in relative S- and P-wave states [15, 16]. A strong
dependence on the invariant mass of the hadron pair is
predicted. Predictions for spin effects that can be ob-
served at the B-factories can be found in papers by Jaffe,
Jin and Tang [17] and Radici, Jakob and Bianconi [18],
with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
estimate the final-state interactions of the meson pairs
from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
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The sum extends over all detected particles, and PCMS
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denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
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4. The measurement of transverse SSA

The observation of transverse single-spin asymmetries at the HERMES experiment provides sig-
nals for transverse-momentum dependent quark distribution and fragmentation functions such as the
transversity and Sivers distributions and the Collins fragmentation function. In this chapter a Fourier
analysis of transverse single-spin asymmetries for semi-inclusive electroproduction of p-mesons and
charged K-mesons on a transversely nuclear-polarised hydrogen target is presented.
Transverse single-spin asymmetries AhU? for some hadron type h and using an unpolarised lepton

beam (U) are defined as the difference of the transverse-target (?) spin-dependent cross sections
s

h
U* and s

h
U+ for semi-inclusive electro-production of hadrons, normalised to the sum of these cross

sections:

AhU? =
s

h
U* �s

h
U+

s

h
U*+s

h
U+

. (4.1)

In an experiment, the transverse target spin orientation, denoted as“*” and “+”, is aligned perpen-
dicular to the lepton beam direction. Hence, the notation AhU? is used for the measured transverse
single-spin asymmetries in contrast to the notation AhUT, applied in theoretical works, where the
transverse target spin orientation is aligned perpendicular to the direction of the virtual photon.
Transverse single-spin asymmetries depend on the azimuthal angle fS of the target spin axis and

the azimuthal angle f of the produced hadron (figure 2.4). A decomposition in terms of Fourier
components in these azimuthal angles provides signals for the various contributions to the transverse
target spin-dependent cross-section, e.g., for the 2hsin(f +fS)iU? Fourier component of the Collins
mechanism and the 2hsin(f �fS)iU? Fourier component of the Sivers mechanism. The Fourier
components, in the following denoted also as single-spin asymmetries amplitudes, are extracted
using a maximum likelihood fit, alternately binned in the Bjorken scaling variable x, the fractional
hadron energy z and the transverse hadron momentum |Ph?| but unbinned in the f and fS.
The estimate of the systematic uncertainties and the interpretation of the extracted SSA amplitudes

are presented in the subsequent chapters 5 and 6. In this chapter, the semi-inclusive measurement of
the deep-inelastic scattering process on a transversely polarised proton target is described (section
4.1) and the Fourier analysis of the transverse single-spin asymmetries is explained (section 4.2).

4.1. The semi-inclusive measurement of the DIS process

Events from deep-inelastic scattering on a transversely nuclear-polarised hydrogen target were re-
corded with a positron beam in the running period 2002–2004 and with an electron beam in the year
2005. For the measurement of the transverse single-spin asymmetries AhU? the data sets of the single
years 2002, 2003, 2004 and 2005 are combined using well-understood data productions, labelled as
02c1, 03c1, 04c1 and 05c2 according to the HERMES convention. Studies of the compatibility
of the recorded data are summarised in section 4.1.7.2. At first the selection of deep-inelastic scat-
tering events according to data quality criteria (section 4.1.1), requirements on the track geometry
(sections 4.1.2 and 4.1.3), the particle identification (sections 4.1.4 – 4.1.6) and the requirements on
the event kinematics (section 4.1.7) are presented.
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4. The measurement of transverse SSA

The observation of transverse single-spin asymmetries at the HERMES experiment provides sig-
nals for transverse-momentum dependent quark distribution and fragmentation functions such as the
transversity and Sivers distributions and the Collins fragmentation function. In this chapter a Fourier
analysis of transverse single-spin asymmetries for semi-inclusive electroproduction of p-mesons and
charged K-mesons on a transversely nuclear-polarised hydrogen target is presented.
Transverse single-spin asymmetries AhU? for some hadron type h and using an unpolarised lepton

beam (U) are defined as the difference of the transverse-target (?) spin-dependent cross sections
s

h
U* and s

h
U+ for semi-inclusive electro-production of hadrons, normalised to the sum of these cross

sections:

AhU? =
s

h
U* �s

h
U+

s

h
U*+s

h
U+

. (4.1)

In an experiment, the transverse target spin orientation, denoted as“*” and “+”, is aligned perpen-
dicular to the lepton beam direction. Hence, the notation AhU? is used for the measured transverse
single-spin asymmetries in contrast to the notation AhUT, applied in theoretical works, where the
transverse target spin orientation is aligned perpendicular to the direction of the virtual photon.
Transverse single-spin asymmetries depend on the azimuthal angle fS of the target spin axis and

the azimuthal angle f of the produced hadron (figure 2.4). A decomposition in terms of Fourier
components in these azimuthal angles provides signals for the various contributions to the transverse
target spin-dependent cross-section, e.g., for the 2hsin(f +fS)iU? Fourier component of the Collins
mechanism and the 2hsin(f �fS)iU? Fourier component of the Sivers mechanism. The Fourier
components, in the following denoted also as single-spin asymmetries amplitudes, are extracted
using a maximum likelihood fit, alternately binned in the Bjorken scaling variable x, the fractional
hadron energy z and the transverse hadron momentum |Ph?| but unbinned in the f and fS.
The estimate of the systematic uncertainties and the interpretation of the extracted SSA amplitudes

are presented in the subsequent chapters 5 and 6. In this chapter, the semi-inclusive measurement of
the deep-inelastic scattering process on a transversely polarised proton target is described (section
4.1) and the Fourier analysis of the transverse single-spin asymmetries is explained (section 4.2).

4.1. The semi-inclusive measurement of the DIS process

Events from deep-inelastic scattering on a transversely nuclear-polarised hydrogen target were re-
corded with a positron beam in the running period 2002–2004 and with an electron beam in the year
2005. For the measurement of the transverse single-spin asymmetries AhU? the data sets of the single
years 2002, 2003, 2004 and 2005 are combined using well-understood data productions, labelled as
02c1, 03c1, 04c1 and 05c2 according to the HERMES convention. Studies of the compatibility
of the recorded data are summarised in section 4.1.7.2. At first the selection of deep-inelastic scat-
tering events according to data quality criteria (section 4.1.1), requirements on the track geometry
(sections 4.1.2 and 4.1.3), the particle identification (sections 4.1.4 – 4.1.6) and the requirements on
the event kinematics (section 4.1.7) are presented.
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TMDs open points:

- What is the pT dependence of TMD polarized and 
unpolarized pdfs? And of polarized and unpolarized 

fragmentation functions?   .

 
- How do TMD pdfs and fragmentation functions evolve? 

Work in progress!!

- Do naive-T-odd TMDs obey the ‘special universality’?
Compass Drell-Yan run just started

 

Mostly missing!! 
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