Production spectra of neutron-rich hypernuclear states in the ${}^{6}\text{Li}(\pi^{-}, K^{+})$ reaction at 1.2 GeV/c

T. Harada¹, Y. Hirabayashi²

¹Osaka Electro-Communication University, Neyagawa, Osaka, 572-8530, Japan.

²Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan.

A ${}_{\Lambda}^{6}$ H hypernucleus is one of the most interesting candidates to investigate neutron-rich Λ hypernuclei because a large Λ binding energy of $B_{\Lambda}({}_{\Lambda}^{6}\text{H}) = 5.8$ MeV for the 0⁺ ground state was suggested due to the contribution of 1.4 MeV caused by the coherent Λ - Σ coupling [1]. The FINUDA collaboration reported a binding energy of $B_{\Lambda}({}_{\Lambda}^{6}\text{H}) = 4.5 \pm 1.2$ MeV in the ${}^{6}\text{Li}(K_{\text{stopped}}^{-}, \pi^{+}){}_{\Lambda}^{6}\text{H}$ reaction [2]. This experimental value of $B_{\Lambda}({}_{\Lambda}^{6}\text{H})$ seems to be in rather good agreement with those of 3.8 ± 0.2 MeV in shell-model calculations [3] and 2.47 MeV in $t + n + n + \Lambda$ four-body cluster-model calculations [4]. Recently, the J-PARC E10 collaboration [5,6] performed the measurement of the ${}^{6}\text{Li}(\pi^{-}, K^{+}){}_{\Lambda}^{6}\text{H}$ reaction at $p_{\pi^{-}} = 1.2$ GeV/c; missing mass spectra from Λ to Σ regions are measured with K^{+} scattering angles of $\theta_{\text{Lab}} = 2-14^{\circ}$, whereas no significant peak structure is observed around the ${}^{4}_{\Lambda}\text{H} + 2n$ threshold.

In this note, we theoretically demonstrate the inclusive spectra of the ${}^{6}\text{Li}(\pi^{-}, K^{+})$ reaction within a distorted-wave impulse approximation, using a coupled $({}^{5}\text{H-}\Lambda) + ({}^{5}\text{He-}\Sigma^{-})$ model with a spreading potential, in order to study the reaction mechanism and the Λ - Σ coupling. The results show that the calculated spectra by $\pi^- p \to K^+ \Sigma^-$ via $\Sigma^$ doorways caused by the $\Sigma^{-}p \leftrightarrow \Lambda n$ coupling (onestep mechanism) can reproduce the experimental data at $p_{\pi^-} = 1.2 \text{ GeV/c}$ [6], as shown in Fig. 1. We confirm that the one-step mechanism is rather favored in production of neutron-rich Λ hypernuclear states by nuclear (π^-, K^+) reactions [7]. The production cross sections of ${}^{6}_{\Lambda}$ H are also discussed, depending on properties of the ${}^{5}\text{H-}\Lambda$ potential and the Λ - Σ mixing.

Figure 1: Comparison with the calculated inclusive spectrum in one-step mechanism and the experimental data at $p_{\pi^-} = 1.2$ GeV/c, $\theta_{\text{Lab}} = 7^{\circ}$ [6].

- [1] Y. Akaishi, Khin Swe Myint, AIP Conf. Proc. 1011 (2008) 277.
- [2] M. Agnello, et al., Phys. Rev. Lett. 108 (2012) 042501.
- [3] A. Gal, D.J. Millener, Phys. Lett. B725 (2013) 445.
- [4] E. Hiyama, et al., Nucl. Phys. A908 (2013) 29.
- [5] H. Sugimura, Phys. Lett. B729 (2014) 39.
- [6] R. Honda, Ph.D. thesis, Tohoku University (2014).
- [7] T. Harada, A. Umeya, Y. Hirabayashi, Phys. Rev. C79 (2009) 014603.