Shell model spectra of light hypernuclei with ΛN and ΛNN forces: the final results concerned hyperon-nucleon interaction parameters

V.N. Fetisov

Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia

Abstract

Low lying spectra of light hypernuclei are analyzed using data on hypernuclear γ lines [1] in the framework of the shell model motivated in ref. [2] where in addition to the ΛN effective interaction with two-body parameters Δ , S_{Λ} , S_n and T [3] the phenomenological zero-range three-body force

 $V = \delta(\mathbf{r}_{\Lambda} - \mathbf{r}_{1})\delta\mathbf{r}_{\Lambda} - \mathbf{r}_{2}(t + t_{s}\boldsymbol{\sigma}_{\Lambda}(\boldsymbol{\sigma}_{1} + \boldsymbol{\sigma}_{2}))$

has been introduced. Matrix elements $(s_{\Lambda}sp|V|s_{\Lambda}sp)$, $(s_{\Lambda}p^{2}|V|s_{\Lambda}p^{2})$ were calculated with the oscillator wave functions for nucleons and with the Woods-Saxon potential wave functions for a Λ particle. The calculations show an extremely week t-dependence of energy splittings and for definiteness sake we take $t=176 \text{ MeV}\text{fm}^6$ [2]. Using the $(3/2^+, 5/2^+)$ doublet splitting (DS) in ${}^9_{\Lambda}$ Be and three levels $(1^-_1, 1^-_2, 2^-)$ in ${}^{16}_{\Lambda}$ O the values of Δ , S_n , T and t_s have been found as functions of S_{Λ} in the interval -0.015 $\leq S_{\Lambda}$ \leq -0.006 (MeV). Spectra of ${}^{9}_{\Lambda}$ Be, ${}^{10}_{\Lambda}$ B, ${}^{11}_{\Lambda}$ B, ${}^{12}_{\Lambda}$ C, ${}^{13}_{\Lambda}$ C, ${}^{15}_{\Lambda}$ N, ${}^{16}_{\Lambda}$ O were calculated with the common values of S_n , T and t_s using the total set of the $0\hbar\omega$ nuclear states. Small variations of Δ_A were taken into account by the scaling factor α_A ($\Delta_A = \alpha_A \Delta_{16}$) estimated for the Gaussian shape of the ΛN potential. The S_{Λ} -dependence of the ground state DS in ${}^{12}_{\Lambda}$ C and ${}^{11}_{\Lambda}$ B derived with the NN forces CKB(I,II,III) (the Cohen-Kurath interaction corrected by Barker) [4] excludes the interactions CKB(I,III) whereas the variant CKB(II) reproduces the observed DS (161 keV and 264 keV)in the vicinity of $S_{\Lambda} \simeq -0.007$. As this takes place, the unobserved DS in ${}^{10}_{\Lambda}$ B does not exceed 70keV. The acceptable parameters are $\Delta_{16}=0.082$, $S_{\Lambda}=-0.007$, $S_{n}=-0.33$, T=0.023 (MeV) and $t_s=216.5$ MeVfm⁶. In this model the calculated values Δ and $|S_{\Lambda}|$ are considerable less than ones given in ref. [5]. The description of DS in $^{7}_{\Lambda}$ Li demands the higher value of Δ that reflects an influence of the cluster structure of ⁷_{Λ}Li [6].

References

- [1] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.
- [2] V.N. Fetisov, JETP Lett. 70 (1999) 233.
- [3] D.J. Millener, A. Gal, C. Dover, R.H. Dalitz, Phys. Rev. C 31 (1985) 499.
- [4] F.C. Barker, Aust. J. Phys. 34 (1981) 7.
- [5] D.J. Millener, Nucl. Phys. A 835 (2010) 11.
- [6] E. Hiyama, M. Kamimura, K. Miyazaki and T. Motoba, Phys. Rev. C 59 (1999) 2351.