Kaonic atom x-ray spectroscopy with superconducting microcalorimeters

- 1. Motivation
- 2. Transition-Edge-Sensor microcalrimeters
- 3. Feasibility test at PSI
- 4. J-PARC experiment
- 5. Summary

Tadashi Hashimoto (RIKEN) for the HEATES (J-PARC E62) collaboration

HEATES collaboration (J-PARC E62)

M. Bazzi^a, D.A. Bennett^b, C. Berucci^c, D. Bosnar^d, C. Curceanu^a, W.B. Doriese^b,
J.W. Fowler^b, H. Fujioka^e, C. Guaraldo^a, F. Parnefjord Gustafsson^f, T. Hashimoto^g,
R.S. Hayano^{h*}, J.P. Hays-Wehle^b, G.C. Hilton^b, T. Hiraiwaⁱ, M. Iio^j, M. Iliescu^a,
S. Ishimoto^j, K. Itahashi^g, M. Iwasaki^{g,l}, Y. Ma^g, H. Noumiⁱ, G.C. O'Neil^b, H. Ohnishi^g,
S. Okada^{g†}, H. Outa^{g‡}, K. Piscicchia^a, C.D. Reintsema^b, Y. Sadaⁱ, F. Sakuma^g,
M. Sato^g, D.R. Schmidt^b, A. Scordo^a, M. Sekimoto^j, H. Shi^a, D. Sirghi^a, F. Sirghi^a,
K. Suzuki^c, D.S. Swetz^b, K. Tanida^k, H. Tatsuno^{b,i}, M. Tokuda^l, J. Uhlig^f,
J.N. Ullom^{b,m}, S. Yamadaⁿ, T. Yamazaki^h, and J. Zmeskal^c

^a Laboratori Nazionali di Frascati dell' INFN, Frascati, RM, I-00044, Italy
^b National Institute of Standards and Technology (NIST), Boulder, CO, 80303, USA
^c Stefan-Meyer-Institut für subatomare Physik, Vienna, A-1090, Austria
^d Department of Physics, University of Zagreb, Zagreb, HR-10000, Croatia
^e Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
^f Department of Chemical Physics, Lund University, Lund, 221 00, Sweden
^g RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan
^h Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan
ⁱ Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan
^j High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
^k Japan Atomic Energy Agency (JAEA), Tokai, 319-1184, Japan
^l Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
^m Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan

 $^* {\rm Spokes person}$

 $^{^{\}ddagger}\mathrm{Co} ext{-spokesperson}$

Kaonic atom X-rays

Unique probe of the K^{bar}-nucleus strong interaction at the threshold energy

Kbar-nucleus interaction from Kaonic atom data

4

- Data points exist across the periodic table
 - K-p, K-d: K^{bar}N scattering length talk by J. Zmeskal on Thursday
 - Z = 2(He) ~ 92(U)
 - measurements in 1970's & 80's
 - not so good quality...
- **Global analysis** prefer a deep potential?
 - Re V ~ 150~200 MeV
 - Phenomenological density dependence optical potential Phys. Rep., 287 (1997) 385.
 - Chiral potential (~50 MeV) Ramos, Oset, NPA671(00)481 + phen. multi nucleon terms.

E. Friedman and A. Gal, NPA 899(2013) 60.

T. Hashimoto@HYP2015

Kbar-nucleus interaction from Kaonic atom data

C. J. Batty, E. Friedman, and A. Gal, Phys. Rep., 287 (1997) 385.

Breakthrough in the x-ray detector resolution is must to improve data quality for small shift & narrow width levels $(\Delta E, \Gamma << 100 \text{ eV})$

More precise discussion about the K-nucl. potential

Kaonic helium x-rays

Transition-Edge-Sensor microcalorimeters

- ✓ Excellent energy resolution ~2 eV FWHM@ 6 keV
- ✓ Wide dynamic range
- ✓ Large effective area with multiplexing technique
- ✓ Portable & compact system

NIST TES system

J.N. Ullom et al., Synchrotron Radiation News, Vol. 27, 24 (2014)

- NIST designed cryostat
 - Pulse tube (60K,3K) + ADR (1K, 50mK)
 - ADR hold time: > 1 day
 - Manufactured by High Precision Devices, Inc. <u>http://www.hpd-online.com/102_cryostat.php</u>

Detector snout

- 240 pixel Mo-Cu bilayer TES
 30 ch TDM(time division multiplexing) readout
- 1 pixel : 300 x 320 um
- 4 um Bi absorber → efficiency ~0.85@6 keV, ~0.4@10 keV

Feasibility test : πC x-ray measurement

- + Aim : studying in-beam performance of TES
- + Site : Paul Scherrer Institute (PSI) at PiM1 beamline
- Measured x-rays: $\pi C 4f \rightarrow 3d$ transition ~ 6.4 keV

(strong-interaction effect is negligible)

<u>πC 4-3 X rays</u>

Experimental setup at J-PARC K1.8BR

TES operation in the J-PARC kaon beam

Comparison of PSI data with the simulation

	$\pi M1$ at PSI	K1.8BR at J-PARC	
Beam momentum	$173 \ { m MeV}/c$	900 MeV/c	
Total beam intensity	$2.8 \times 10^{6} / \text{sec}$	8.0×10^5 / spill (@ 5	60 kW)
$K^-/\pi^-/\mu^-/e^-$ ratio	-/~40%~/~5%~/~55%	20% / 60% / 10% / 10%	
TES trigger rate / pixel	0.64/sec	> 0.17 /spill	
Energy deposit on Si	152 MeV/sec	46 MeV/spill	

J-PARC will be less severe compared with PSI

Expected spectrum in J-PARC E62

<u>Summary</u>

- Transition-edge-sensor microcalorimeters are now available for hadronic atom x-ray spectroscopy
 - Drastic improvement in energy resolution ~150 eV (SDD) → ~6 eV (TES) [FWHM@6 keV]
 - Successfully demonstrated at a pion beamline at PSI
- Kaonic helium x-rays will be measured in J-PARC E62
 - Precision goal for ΔE_{2p} : ~ 0.2 eV
 - Contribute to the determination of the potential strength

