Recent results of the K^{bar}NN search via the in-flight ³He(K⁻,n) reaction at J-PARC

F. Sakuma, RIKEN for the J-PARC E15 collaboration

HYP2015, Sendai, Sep.7-12, 2015

Kaonic Nuclei

Kaonic nucleus is a bound state of nucleus and anti-kaon (K^{bar}NN, K^{bar}NNN, K^{bar}K^{bar}NN, ...)

T.Yamazaki, A.Dote, Y.Akiaishi, PLB587, 167 (2004).

K^{bar}NN Bound State

K^{bar}NN : the simplest K^{bar}-nuclear state

Calculated $K^- pp$ binding energies B and widths Γ (in MeV).					A.Gal, NPA914(2013)270			
	Chiral, energy dependent			Non-chiral, static calculations				
	var. [7]	var. [8]	Fad. [9]	var. [10]	Fad [11]	Fad [12]	var. [13]	
В	16	17-23	9–16	48	50-70	60-95	40-80	
Г	41	40-70	34-46	61	90-110	45-80	40-85	
[7] N. [8] A. [9] Y. [10] T. [11] N. [11] N. [12] Y. [12] Y. [13] S.	Barnea, A. Gal, E. Doté, T. Hyodo, W Doté, T. Hyodo, W keda, H. Kamano, Yamazaki, Y. Akai /. Shevchenko, A. /. Shevchenko, A. keda, T. Sato, Phy keda, T. Sato, Phy Wycech, A.M. Gre	Z. Liverts, Phys. 7. Weise, Nucl. Ph 7. Weise, Phys. Re 7. Sato, Prog. Th shi, Phys. Lett. B Gal, J. Mareš, Ph Gal, J. Mareš, J. 1 7. Rev. C 76 (200 rs. Rev. C 79 (200 en, Phys. Rev. C	200 200 150 150 100 x. Dote, T.Hyodo, W.We T.Yamaz 50 x. Barnea, T.Gal, E.Z.Liv Y.Ikeda, H.Kamano, T.S 0 200 200 200 200 200 200 200	Na, EXA2014 E27 E27 EVChenko, A.Gal, J.Mares ise Y.Ikeda, T.Sato Eaki, Y.Akaishi s.Wycech, A.M.Green ato 0 60 80 100	FINUDA OBELIX 120 140 B _{K⁻pp} [MeV]			

All theoretical studies predict existence of the K^{bar}NN \rightarrow However, B.E. and Γ are controversial

J-PARC E15 Experiment

A search for the simplest kaonic nucleus, K^{bar}NN, using ³He(*in-flight* K⁻,n) reaction

- two-nucleon absorption]
- hyperon decays

CAN be discriminated kinematically

Experimental Setup

Status of the E15 Experiment

- Production run of ~1% of the approved proposal was successfully carried out in 2013.
- 2nd physics run will be performed in the autumn of 2015

	Exp. Target	Primary-beam intensity	Secondary- kaon intensity	Duration	Kaons on target (w/ tgt selection)
May, 2013 (Run#49c)	E15 ^{1st} ³ He	24 kW (30 Tppp, 6s)	140 k/spill	88 h	5.3 x 10 ⁹
Apr-May, 2015 ((Run#62)	calibration H ₂	26.5 kW (33 Tppp, 6s)	130 k/spill	73 h	3.7 x 10 ⁹
Apr-May, 2015 (Run#62)	alibration D ₂	26.5 kW (33 Tppp, 6s)	130 k/spill	53 h	2.8 x 10 ⁹
Autumn, 2015	E15 ^{2nd} ³ He	40 kW (50 Tppp, 6s)	200k/spill	26d	50x10 ⁹

* production target: Au 50% loss, spill length: 2s, spill duty factor: 35~45%, K/pi ratio: ~1/2
 * ~70% of beam kaons hit the fiducial volume of ³He target

Formation Channel, Semi-Inclusive ³He(K⁻,n)X

Prog. Theor. Exp. Phys. **2015**, 061D01 (11 pages) DOI: 10.1093/ptep/ptv076

Letter

Search for the deeply bound K^-pp state from the semi-inclusive forward-neutron spectrum in the in-flight K^- reaction on helium-3

J-PARC E15 Collaboration

T. Hashimoto^{1,*,†}, S. Ajimura², G. Beer³, H. Bhang⁴, M. Bragadireanu⁵, L. Busso^{6,7},
M. Cargnelli⁸, S. Choi⁴, C. Curceanu⁹, S. Enomoto², D. Faso^{6,7}, H. Fujioka¹⁰,
Y. Fujiwara¹, T. Fukuda¹¹, C. Guaraldo⁹, R. S. Hayano¹, T. Hiraiwa², M. Iio¹²,
M. Iliescu⁹, K. Inoue¹³, Y. Ishiguro¹⁰, T. Ishikawa¹, S. Ishimoto¹², K. Itahashi¹⁴,
M. Iwai¹², M. Iwasaki^{14,15}, Y. Kato¹⁴, S. Kawasaki¹³, P. Kienle^{16,‡}, H. Kou¹⁵, Y. Ma¹⁴,
J. Marton⁸, Y. Matsuda¹⁷, Y. Mizoi¹¹, O. Morra⁶, T. Nagae¹⁰, H. Noumi²,
H. Ohnishi^{14,2}, S. Okada¹⁴, H. Outa¹⁴, K. Piscicchia⁹, M. Poli Lener⁹,
A. Romero Vidal⁹, Y. Sada¹⁰, A. Sakaguchi¹³, F. Sakuma¹⁴, M. Sato¹⁴, A. Scordo⁹,

Subthreshold Excess?

Close-Up of the Deeply-Bound Region

Decay Channel, Exclusive ³He(K⁻,Λp)n

Y.Sada et al., paper in preparation

Exclusive ³He(K⁻, Λ p)n events

Exclusive ³He(K⁻,Λp)n by 3NA

- The spectrum CANNOT be reproduced by only 3NA
- Clear structure is seen around the threshold

Assuming a Breit-Wigner

- χ^2 -test with a Breit-Wigenr and 3NAs
 - assumption: isotropic Λp decay
 - parameters: Mass, Width, and Yield

Momentum Transfer of (K⁻,n)

Summary

Deeply-bound region The bump-structure, which was reported by FINUDA/DISTO/E27, has NOT been observed

Around the threshold

Structure has been seen both in formation- and decay-channel

 Contribution of Y*?
 Hint of S=-1 di-baryon state?
 D Reaction dependence? K^{bar}NN formation strongly depends on reaction channel?

- $\succ \gamma/\pi/K/p$ induced reaction?
- momentum transfer?

The J-PARC E15 Collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j\$}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •

(b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada ᡟ

(c) Department of Physics, Seoul National University, Seoul, 151–742, South Korea ቚ

(d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

(e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania 📕

(f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳

(g) INFN Sezione di Torino, Torino, Italy

(h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy

(i) Department of Physics, Osaka University, Osaka, 560–0043, Japan 🔹

(j) Department of Physics, Kyoto University, Kyoto, 606–8502, Japan 🔸

(k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan ●

(I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572–8530, Japan 鱼

(m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152–8551, Japan 🔸

(n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔹

(o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ●

(p) Technische Universität München, D-85748, Garching, Germany 💻

(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •

(r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan •

(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳

(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 💌

(*) Spokesperson

(\$) Co-Spokesperson