PHOTO- AND ELECTROPRODUCTION OF HYPERON AND HYPERTRITON

T. Mart[†] and E. Hiyama[‡]

[†]Departemen Fisika FMIPA, Universitas Indonesia, Depok 16424, Indonesia [‡]RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan

HYP 2015 Tohoku University, Japan, September 2015

Contents

- Motivation
- Progress in the elementary photo- and electroproduction of kaon
 - Old models
 - New models
- Hypertriton production
 - Previous calculation
 - Future calculation
- Conclusion

- E

Motivation, Kaon-Maid is getting Old

K An effective La	Brangian Model for Kaon Photo- and Electroproduction on the Nucleon
T. Mart (University of In	donesia), C. Bennhold and H. Haberzettl (George Washington University), and L. Tiator
For kaon photoproduction: For the missing resonance D ₁₃ (1900):	References: F.X. Lee, T. Mart, C. Bennhold, H. Haberzettl, L.E. Wright, Nucl. Phys. A695 (2001) 237, or nucl-th/9907119 T. Mart, C. Bennhold, <u>Phys. Rev. C61 (2000) 012201, or nucl-th/9906096</u> C. Bennhold <i>et al.</i> , <u>nucl-th/9008024</u>
Electromagnetic Mu CGLN and Helicity A Polarized Response Unpolarized Response Unpolarized Officeross Sections Transverse Polarization Target Polarization Recoil Polarization	C. Beinnold, H. Haberzeld, I. Mart, <u>nutr-In/99/09/22</u> <u>Itipoles</u> (E _{1z} , M _{1z} , L _{1z} , S _{1z}) <u>multitudes</u> (F ₁₋ ,,F ₆ , H ₁ ,,H ₀) <u>Functions</u> (R ₁ , R ₁) <u>Iff. Cross Sections</u> (I.,T, I., T, T, I.T') <u>etion</u> <u>(T, I, I, I, T, T')</u> <u>ion Observables</u> (ds/dW, T, S, P, E, F,) (P _w , P _y , P _z)
xternal services: IAID Homepage MAID2003 MAI	D2000 DMT2001 ETA-MAID

Motivation, formulation is not clearly revealed

APPENDIX C

The contributions to the invariant amplitudes corresponding to the exchange of a $N^*(5/2^+)$ resonance have the same structure as in the spin-3/2 case. We give only the photoproduction amplitudes

$$\mathcal{A}_{j} = \frac{1}{10(s - M_{N^{*}}^{2} + iM_{N^{*}}\Gamma_{N^{*}})}\sum_{i=1}^{2} G_{i}P_{ij}, \quad j = 1, \dots, 4.$$

Defining $w = \sqrt{s}$, the contributions coming from the G_1 coupling are

J.-C. David, et al., Phys. Rev. C 53, 2613 (1996).

Motivation, models do not work

Problem of Data consistency at forward direction

 Even with spin 3/2 and 5/2 [David, et al., PRC 53, 2613 (1996)] the prediction is far from ideal

A D N A P N A D N A D

Motivation, models do not work

- SAPHIR data 1998, not included in the fit
- Data consistency?
- Even with spin 3/2 and 5/2 [David, et al., PRC 53, 2613 (1996)]

Conclusion:

"We have to search for other spin 3/2 and spin 5/2 formulations"

Progress in Isobar Model, before 1998

Terry Mart (Universitas Indonesia)

▲ E → E → へへの HYP-2015 8/55

Progress in Isobar Model, before 1998

< ロ > < 回 > < 回 > < 回 > < 回</p>

ъ

Problems

- $\bullet\,$ Fitting all data simultaneously \rightarrow democratic model which is not consistent with both data sets
- This problem is simply forgotten, but seems to appear mildly in the new Crystal Ball data
- Unsolved homework!

Problems with the spin 3/2 and 5/2 formalism

- W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
- P. A. Moldauer and K. M. Case, Phys. Rev. 102, 279 (1956).
- L. M. Nath, B. Etemadi and J. D. Kimel, Phys. Rev. D 3, 2153 (1971).
- H. T. Williams, Phys. Rev. C 31, 2297 (1985).
- M. Benmerrouche, R.M. Davidson and N.C. Mukhopadhyay, Phys. Rev. C 39, 2339 (1989).
- H. Haberzettl, nucl-th/9812043.
- V. Pascalutsa, Phys. Rev. D 58, 096002 (1998).
- T. Mizutani, C. Fayard, G. H. Lamot and B. Saghai, Phys. Rev. C 58, 75 (1998).
- V. Pascalutsa and R. Timmermans, Phys. Rev. C 60, 042201 (1999).
- V. Pascalutsa, Phys. Lett. B 503, 85 (2001).
- O. V. Maxwell, Phys. Rev. C 70, 044612 (2004)
- V. Shklyar, H. Lenske and U. Mosel, Phys. Rev. C 82, 015203 (2010).
- T. Vrancx, L. De Cruz, J. Ryckebusch, P. Vancraeyveld, Phys. Rev. C 84, 045201 (2011).
- ...

イロト イヨト イヨト イヨト

Problems with the spin 3/2 and 5/2 formalism

Finding a consistent propagator without background coming from the lower spin components.

Our solution relies on

Pascalutsca & Timmermans, PRC60, 042201 (1999):

"Our basic premise is that a consistent interaction should not <u>activate</u> the spurious DOF, and therefore the full interacting theory must obey similar symmetry requirements as the corresponding free theory"

Isobar Model

イロト イヨト イヨト イヨト

Isobar Model

From the feynman diagrams we calculate \mathcal{M} and decompose it to the six gauge- and Lorentz-invariant M_i matrices

$$\mathcal{M} = \mathcal{M}_{p} + \mathcal{M}_{\Lambda} + \mathcal{M}_{\Sigma^{0}} + \mathcal{M}_{K^{*}} + \mathcal{M}_{N^{*}} + \cdots$$
$$= \bar{u}_{\Lambda} \sum_{i=1}^{6} A_{i} M_{i} u_{p} ,$$

where

we obtain the amplitudes A_1, \ldots, A_6 and calculate the observables.

イロト 不得 トイヨト イヨト

Model 1, Propagator

Spin 3/2 resonance¹

Spin 5/2 resonance^{1,2}

$$P_{\mu\nu\alpha\beta}^{5/2} = \frac{\not\!\!\!/ + \not\!\!\!/ + \sqrt{s}}{10(s - m_{N^*}^2 + im_{N^*}\Gamma_{N^*})} \Big[5P_{\mu\alpha}P_{\nu\beta} - 2P_{\mu\nu}P_{\alpha\beta} + 5P_{\mu\beta}P_{\nu\alpha} + P_{\mu\rho}\gamma^{\rho}\gamma^{\sigma}P_{\sigma\alpha}P_{\nu\beta} + P_{\nu\rho}\gamma^{\rho}\gamma^{\sigma}P_{\sigma\beta}P_{\mu\alpha} + P_{\mu\rho}\gamma^{\rho}\gamma^{\sigma}P_{\sigma\beta}P_{\nu\alpha} + P_{\nu\rho}\gamma^{\rho}\gamma^{\sigma}P_{\sigma\alpha}P_{\mu\beta} \Big],$$

with

$$P_{\mu\nu} = -g_{\mu\nu} + \frac{1}{s}(\rho+k)_{\mu}(\rho+k)_{\nu}$$
.

1. J.-C. David, et al., Phys. Rev. C 53, 2613 (1996).

2. V. Shklyar, H. Lenske and U. Mosel, Phys. Rev. C 82, 015203 (2010).

イロト イヨト イヨト イヨト

Model 1, vertex factors

For spin 3/2 resonances the electromagnetic vertex is[†]

$$\Gamma^{\nu(\pm)}_{N^*\rho\gamma} \quad = \quad \left\{ g^a_{N^*\rho\gamma} \left(\varepsilon^\nu - \frac{\not e^{k\nu}}{\sqrt{s} \pm m_\rho} \right) + g^b_{N^*\rho\gamma} \frac{\rho \cdot \varepsilon \, k^\nu - \rho \cdot k\varepsilon^\nu}{(\sqrt{s} \pm m_\rho)^2} + g^c_{N^*\rho\gamma} \frac{k \cdot \varepsilon \, k^\nu - k^2\varepsilon^\nu}{(\sqrt{s} \pm m_\rho)^2} \right\} \Gamma_{\pm} \; ,$$

where $\Gamma_+ = i\gamma_5$ and $\Gamma_- = 1$. and the hadronic vertex reads

$$\Gamma^{\mu(\pm)}_{K\Lambda N^*} \quad = \quad \frac{g_{K\Lambda N^*}}{m_{N^*}} \, p^{\mu}_{\Lambda} \, \Gamma_{\mp} \, .$$

The vertex factors for spin 5/2 resonances are analogous.

[†]J.-C. David, et al., Phys. Rev. C 53, 2613 (1996).

Model 2, Propagator

Spin 3/2 resonance¹

$$P_{\mu\nu}^{3/2} = \frac{\not p + \not k + m_{N^*}}{3(s - m_{N^*}^2 + im_{N^*}\Gamma_{N^*})} \left[-3g_{\mu\nu} + \gamma_{\mu}\gamma_{\nu} + \frac{1}{s} \left\{ (\not p + \not k)\gamma_{\mu}(\rho + k)_{\nu} + (\rho + k)_{\mu}\gamma_{\nu}(\not p + \not k) \right\} \right]$$

Spin 5/2 resonance²

$$P_{\mu\nu\alpha\beta}^{5/2} = \frac{\not\!\!\!/ + \not\!\!\!/ + \sqrt{s}}{10(s - m_{N^*}^2 + im_{N^*}\Gamma_{N^*})} \Big[5P_{\mu\alpha}P_{\nu\beta} - 2P_{\mu\nu}P_{\alpha\beta} + 5P_{\mu\beta}P_{\nu\alpha} + P_{\mu\rho}\gamma^{\rho}\gamma^{\sigma}P_{\sigma\alpha}P_{\nu\beta} + P_{\nu\rho}\gamma^{\rho}\gamma^{\sigma}P_{\sigma\beta}P_{\mu\alpha} + P_{\mu\rho}\gamma^{\rho}\gamma^{\sigma}P_{\sigma\beta}P_{\nu\alpha} + P_{\nu\rho}\gamma^{\rho}\gamma^{\sigma}P_{\sigma\alpha}P_{\mu\beta} \Big],$$

with

$$P_{\mu\nu} = -g_{\mu\nu} + \frac{1}{s}(p+k)_{\mu}(p+k)_{\nu}$$
.

1. V. Pascalutsa, Phys. Lett. B **503**, 85 (2001). 2. J.-C. David, *et al.*, PRC **53**, 2613 (1996), V. Shklyar, *et al.*, PRC **82**, 015203 (2010), T. Vrancx, *et al.*, PRC **84**, 045201 (20

Model 2, vertex factors

For spin 3/2 resonances the electromagnetic vertex is[†]

$$\begin{split} \Gamma^{\nu(\pm)}_{N^* \rho \gamma} &= -\frac{i}{m_{N^*}^2} \left[g^{(1)}(\varepsilon^{\nu} \not\!\!k - k^{\nu} \not\!\!\epsilon) \not\!\rho + g^{(2)}(k^{\nu} \rho \cdot \varepsilon - \varepsilon^{\nu} \rho \cdot k) + g^{(3)} \rho^{\nu}(\not\!\!\epsilon \not\!\!k - \not\!\!k \not\!\!\epsilon) \right. \\ &+ g^{(4)} \gamma^{\nu}(\not\!\!k \not\!\!\epsilon - \not\!\!\epsilon \not\!\!k) \not\!\rho + g^{(5)} \gamma^{\nu}(\rho \cdot k \not\!\!\epsilon - \rho \cdot \varepsilon \not\!\!k) \right] \Gamma_{\pm} \;, \end{split}$$

where $\Gamma_+ = i\gamma_5$ and $\Gamma_- = 1$. and the hadronic vertex reads

$$\Gamma^{\mu(\pm)}_{K\Lambda N^*} = rac{g_{K\Lambda N^*}}{m_{N^*}^2} \Gamma_{\mp} i \varepsilon^{\mu
u
ho \sigma} p_{\Lambda
u} \gamma_5 \gamma_{
ho} q_{\sigma} \; .$$

The vertex factors for spin 5/2 resonances are analogous.

[†]V. Pascalutsa and R. Timmermans, Phys. Rev. C 60, 042201 (1999).

Spin 3/2 Model 1

e.g. A_1, \cdots, A_4 for Spin 3/2

$$\begin{array}{lll} A_1 & = & \pm \Big[(m_p + m_h) (\frac{3}{2} - \frac{1}{8} c_h \pm \frac{1}{2\sqrt{s}} m_h) \mp c_{\pm} \{s - m_K^2 - 3b_h + m_h (\pm 2\sqrt{s} + m_p)\} \mp \frac{2}{8} c_h c_{\pm} c_k \pm \frac{1}{\sqrt{s}} c_{\pm} \\ & \times (m_h c_k + m_h c_h - m_p c_h) \Big] G_1 \mp \Big[\frac{1}{2} (m_p + m_h) \Big\{ b_p - 3b_h + 2c_h + m_h (\pm \sqrt{s} - m_p) + \frac{2}{8} k^2 c_h \\ & \mp \frac{1}{\sqrt{s}} [k^2 m_h \pm c_h (\sqrt{s} \pm m_p)] \Big\} + b_p (m_p \mp \frac{1}{\sqrt{s}} c_h) \Big] G_2 \pm k^2 \Big[\frac{1}{2s} (m_p + m_h) (2c_h - s \mp m_h \sqrt{s}) - m_p \pm \frac{1}{\sqrt{s}} c_h \Big] G_3 \\ A_2 & = & \frac{1}{t - m_K^2} \Big[\Big\{ 3c_{\pm} (c_4 - 2b_h) \pm 2m_h + \frac{2}{8} c_{\pm} c_h (2c_k - s + m_p^2) \mp \frac{1}{\sqrt{s}} m_h c_{\pm} [(\sqrt{s} \pm m_p)^2 + 2c_k] \Big\} G_1 \\ & \quad + \Big\{ 3(b_h - b_p) (\sqrt{s} \mp m_p) + k^2 [\pm m_h - \frac{2}{8} c_h c_{\pm} (s - m_p^2) - \frac{1}{\sqrt{s}} c_h \mp \frac{1}{\sqrt{s}} m_h (\sqrt{s} \pm m_p)] \Big\} G_2 \\ & \quad + k^2 \Big\{ -3(\sqrt{s} \mp m_p) \mp 2m_h + \frac{2}{8} c_{\pm} c_h (s - m_p^2) \pm \frac{1}{\sqrt{s}} m_h (\sqrt{s} \pm m_p) \Big\} G_3 \Big] , \\ A_3 & = & \quad \mp \frac{1}{2} \Big\{ 3 \mp 2c_{\pm} m_h + \frac{2}{s} c_h \mp \frac{1}{\sqrt{s}} (m_h \pm 2c_{\pm} c_h) \Big\} G_1 \pm \frac{1}{2} \Big[3(b_p + b_h) - 2c_h \mp c_{\pm} m_h (s - m_p^2) - \frac{2}{8} k^2 c_h \\ & \quad \pm \frac{1}{\sqrt{s}} \Big\{ k^2 m_h \pm c_h (\sqrt{s} \pm m_p) \Big\} \Big] G_2 \pm \frac{1}{2} k^2 (3 \mp \frac{2}{8} c_h \mp \frac{1}{\sqrt{s}} m_h) G_3 , \\ A_4 & = & \quad \pm \frac{1}{2} \Big\{ 3 \pm 2c_{\pm} m_h - \frac{2}{8} c_h \pm \frac{1}{\sqrt{s}} (m_h \pm 2c_{\pm} c_h) \Big\} G_1 \pm \frac{1}{2} \Big[3(b_p - b_h) + 2c_h \pm c_{\pm} m_h (s - m_p^2) + \frac{2}{8} k^2 c_h \\ & \quad \mp \frac{1}{\sqrt{s}} \Big\{ k^2 m_h \pm c_h (\sqrt{s} \pm m_p) \Big\} \Big] G_2 \pm \frac{1}{2} k^2 (3 - \frac{2}{8} c_h \pm \frac{1}{\sqrt{s}} m_h) G_3 , \\ A_4 & = & \quad \pm \frac{1}{2} \Big\{ k^2 m_h \pm c_h (\sqrt{s} \pm m_p) \Big\} \Big] G_2 \pm \frac{1}{2} k^2 (3 - \frac{2}{8} c_h \pm \frac{1}{\sqrt{s}} m_h) G_3 , \\ & \quad \pm \frac{1}{\sqrt{s}} \Big\{ k^2 m_h \pm c_h (\sqrt{s} \pm m_p) \Big\} \Big] G_2 \pm \frac{1}{2} k^2 (3 - \frac{2}{8} c_h \pm \frac{1}{\sqrt{s}} m_h) G_3 , \\ & \quad \pm \frac{1}{\sqrt{s}} \Big\{ k^2 m_h \pm c_h (\sqrt{s} \pm m_p) \Big\} \Big] G_2 \pm \frac{1}{2} k^2 (3 - \frac{2}{8} c_h \pm \frac{1}{\sqrt{s}} m_h) G_3 , \\ & \quad \pm \frac{1}{\sqrt{s}} \Big\{ k^2 m_h \pm c_h (\sqrt{s} \pm m_p) \Big\} \Big] G_2 \pm \frac{1}{2} k^2 (3 - \frac{2}{8} c_h \pm \frac{1}{\sqrt{s}} m_h) G_3 , \\ & \quad \pm \frac{1}{\sqrt{s}} \Big\{ k^2 m_h \pm k b_h (\sqrt{s} \pm m_p) \Big\} \Big] G_2 \pm \frac{1}{2} k^2 (3 - \frac{2}{8} c_h \pm \frac{1}{\sqrt{s}} m_h) G_3 , \\ & \quad \pm \frac{1}{\sqrt{s}} \Big\{ k^2 m_h$$

Note: A_5 and A_6 have been also calculated \rightarrow only for electroproduction

イロト イヨト イヨト イヨト

Spin 5/2 Model 1

e.g. $\textit{A}_1, \cdots, \textit{A}_3$ for Spin 5/2

$$\begin{split} \mathsf{A}_{1} &= & \mp \Big[5c_{1} \{ (m_{p} + m_{h})c_{s} \mp 2c_{\mp}c_{1} \} \mp 2c_{2} \{ c_{\mp}c_{3} \mp \frac{1}{2s} (m_{p} + m_{h})c_{k} \} - d_{\mp} \Big\{ 2c_{1}\sqrt{s} [1 + 2c_{\mp}(\sqrt{s} \pm m_{h})] - 4c_{1}c_{\mp}c_{k} \pm (m_{p} + m_{h})[c_{1} - c_{s}\sqrt{s}(\sqrt{s} \pm m_{p}) + c_{s}c_{k}] \Big\} \Big] \mathsf{G}_{1} \pm \Big[(m_{p} + m_{h}) \Big\{ 5c_{1} \\ & \times (\frac{1}{s}k^{2}c_{h} + b_{p} - b_{h}) - k^{2}c_{2}(\frac{1}{s}c_{k} - 1) \Big\} + d_{\mp} \Big\{ -c_{1}(2b_{p}\sqrt{s} + (m_{p} + m_{h})[\sqrt{s}(m_{p} \pm \sqrt{s}) \\ & \mp k^{2}] \big\} \mp (m_{p} + m_{h})(k^{2}c_{s} - b_{q})[\sqrt{s}(\sqrt{s} \pm m_{p}) - c_{k}] \Big\} \Big] \mathsf{G}_{2} \pm k^{2} \Big[(m_{p} + m_{h})(5c_{1}c_{s} + \frac{1}{s}c_{k}c_{2}) \\ & + d_{\mp} \Big\{ -2c_{1}\sqrt{s} \mp c_{1}(m_{p} + m_{h}) \pm c_{s}(m_{p} + m_{h})[\sqrt{s}(\sqrt{s} \pm m_{p}) - c_{k}] \Big\} \Big] \mathsf{G}_{3} \; . \end{split}$$

Note: A_4, \cdots, A_6 have been also calculated.

Terry Mart (Universitas Indonesia)

▲ E ▶ E シへの HYP-2015 25 / 55

イロト イヨト イヨト イヨト

Spin 3/2 Model 2

e.g. A_1, \cdots, A_4 for Spin 3/2

$$\begin{split} A_1 &= \pm m_p \sqrt{s} \Big[d_{\pm} \{ -2\sqrt{s} (m_{\Lambda} \mp \sqrt{s}) \mp (c_k + \frac{1}{2} (m_p + m_{\Lambda}) (m_p \mp \sqrt{s})) \} - 3 \{c_1 + \frac{1}{2} c_s (m_p + m_{\Lambda}) \\ &\times (m_p \pm \sqrt{s}) \} \Big] G_1 \pm \frac{1}{2} \sqrt{s} \Big[d_{\pm} \{ 2b_p \sqrt{s} + (m_p + m_{\Lambda}) (m_p \mp \sqrt{s}) \sqrt{s} \pm k^2 (m_p + m_{\Lambda}) \} + 3 (m_p + m_{\Lambda}) (c_1 - b_p c_s) \Big] G_2 \\ &\pm 2\sqrt{s} \Big[d_{\pm} \{ 2b_p \sqrt{s} + (m_p + m_{\Lambda}) (m_p \mp \sqrt{s}) \sqrt{s} - (m_p \sqrt{s} \mp c_p) (m_{\Lambda} \mp \sqrt{s}) \} - 3c_1 (m_{\Lambda} \pm \sqrt{s}) \Big] G_3 \ , \\ A_2 &= \pm \frac{1}{t - m_k^2} \Big[m_p \sqrt{s} \Big\{ \pm k^2 d_{\pm} + 3 (k^2 c_s - 2b_q) \Big\} G_1 + \sqrt{s} \Big\{ \mp d_{\pm} m_p k^2 - 3 (m_p \mp \sqrt{s}) (c_1 - b_p c_s) \Big\} G_2 + 4sk^2 d_{\pm} G_3 \Big] \ , \\ A_3 &= \pm m_p \sqrt{s} \Big[d_{\pm} \{ -2\sqrt{s} \mp \frac{1}{2} (m_p \mp \sqrt{s}) \} + \frac{3}{2} (m_p \pm \sqrt{s}) (1 + \frac{1}{s} c_{\Lambda}) \Big] G_1 \pm \frac{1}{2} \sqrt{s} \Big[d_{\pm} \{ (m_p \mp \sqrt{s}) \sqrt{s} \pm k^2 \} \\ &\quad + 3 \{c_1 + b_p (1 + \frac{1}{s} c_{\Lambda}) \} \Big] G_2 \mp 2\sqrt{s} (\pm c_k d_{\pm} + 3c_1) G_3 \\ A_4 &= \pm m_p \sqrt{s} \Big[d_{\pm} \{ -2\sqrt{s} \mp \frac{1}{2} (m_p \mp \sqrt{s}) \} - \frac{3}{2} (m_p \pm \sqrt{s}) c_s \Big] G_1 \pm \frac{1}{2} \sqrt{s} \Big[d_{\pm} \{ (m_p \mp \sqrt{s}) \sqrt{s} \pm k^2 \} \\ &\quad + 3 \{c_1 - b_p c_s \} \Big] G_2 \mp 2\sqrt{s} (\pm c_k d_{\pm} + 3c_1) G_3 \\ \end{split}$$

イロト イポト イヨト イヨト 二日

Spin 5/2 Model 2

e.g. A_1, \cdots, A_4 for Spin 5/2

$$\begin{split} A_1 &= \pm 2m_p\sqrt{s}\Big[d_{\mp}\{-3c_1\sqrt{s}(m_h\pm\sqrt{s}) - \frac{1}{2}c_sk^2(m_p+m_h)\sqrt{s}\pm[2c_1c_k+\frac{1}{2}(m_p+m_h)(m_p\pm\sqrt{s})(c_1+c_kc_s)]\} \\ &+\{-(5c_1^2+c_2c_3) - \frac{1}{2}(m_p+m_h)(m_p\mp\sqrt{s})(5c_1c_s+\frac{1}{s}c_2c_k\}\Big]G_1\pm\sqrt{s}\Big[d_{\mp}\{2b_pc_1\sqrt{s}+(m_p+m_h)(m_p\pm\sqrt{s})(m_p\pm\sqrt{s})(m_p\pm\sqrt{s})+(m_p+m_h)(b_pc_q-2c_1k^2)\} + (m_p+m_h)\{5c_1(c_1-b_pc_s) - \frac{1}{s}c_2c_pk^2\}\Big]G_2 \\ &\pm 2\sqrt{s}\Big[4\sqrt{s}c_1d_{\mp}(b_p\pm\frac{1}{\sqrt{s}}c_km_h) - (m_h\mp\sqrt{s})\times(10c_1^2+2c_2c_3)\Big]G_3 \ , \\ A_2 &= \pm\frac{1}{t-m_k^2}\Big(2m_p\sqrt{s}\Big[d_{\mp}\{c_sk^2\sqrt{s}(m_p\mp\sqrt{s})\mp[(c_1+c_kc_s)k^2-2b_qc_k]\} + \{5c_1(k^2c_s-2b_q) - c_2k^2(2-\frac{1}{s}c_k)\}\Big]G_1 \\ &+ 2\sqrt{s}\Big[d_{\mp}\{(2c_1k^2+b_pc_sk^2-2b_pb_q)\sqrt{s}\pm(m_p\mp\sqrt{s})(2c_1k^2-b_pb_q)\} + (m_p\pm\sqrt{s})\{5c_1(b_pc_s-c_1) + \frac{1}{s}c_pc_2k^2\}\Big] \\ &\times G_2 + 16sk^2c_1d_{\mp}G_3\Big) \ , \\ A_3 &= \pm\sqrt{s}\Big(2m_p\Big[d_{\mp}\sqrt{s}\{-3c_1+\frac{1}{2}k^2(1+\frac{1}{s}c_h)\pm\frac{1}{2\sqrt{s}}(m_p\pm\sqrt{s})[c_1-(1+\frac{1}{s}c_h)c_k]\} + \frac{1}{2}(m_p\mp\sqrt{s})\{5c_1(1+\frac{1}{s}c_h) - \frac{1}{s}c_2c_k\}\Big]G_1 + \Big[d_{\mp}\{(m_p\pm\sqrt{s})\sqrt{s}[2c_1+b_p(1+\frac{1}{s}c_h)]\pm(b_pb_q-2c_1k^2-2b_pc_k)\}\Big] \end{split}$$

+
$$\left\{5c_1[c_1+b_p(1+\frac{1}{s}c_{\Lambda})]-\frac{1}{s}c_2c_pk^2\right\}$$
 $G_2+2\left[\pm 4c_1c_kd_{\mp}-(10c_1^2+2c_2c_3)\right]G_3$,

$$\begin{aligned} A_4 &= \pm \sqrt{s} \Big(2m_p \Big[d_{\mp} \sqrt{s} \Big\{ -(3c_1 + \frac{1}{2}c_s k^2) \pm \frac{1}{2\sqrt{s}} (m_p \pm \sqrt{s}) (c_1 + c_k c_s) \Big\} - \frac{1}{2} (m_p \mp \sqrt{s}) \{ 5c_1 c_s \\ &+ \frac{1}{s} c_2 c_k \Big\} \Big] G_1 + \Big[d_{\mp} \Big\{ (m_p \pm \sqrt{s}) \sqrt{s} [2c_1 - b_p c_s] \pm (b_p b_q - 2c_1 k^2) \Big\} + \{ 5c_1 [c_1 - b_p c_s] \\ &- \frac{1}{s} c_2 c_p k^2 \Big\} \Big] G_2 + 4 \{ \pm 2c_1 c_k d_{\mp} - (5c_1^2 + c_2 c_3) \} \times G_3 \Big) \,, \end{aligned}$$

From the two formulations of spin 3/2 and 5/2 resonances used in the present analysis we obtain four combinations (models)

/2
1
1
2
2

Database

Observables	N _{data}
$d\sigma/d\Omega$	4745
P_{Λ}	2006
Σ	100
Т	66
C_x	159
C_z	160
O_x	66
Oz	66
Total	7433

Terry Mart (Universitas Indonesia)

Nucleon resonances used in our calculation (PDG2014)

Resonance	Status	Mass (MeV)	Width (MeV)
N(1440)P ₁₁	****	$1430\pm\!20$	350 ± 100
N(1520)D ₁₃	****	1515 ± 5	115 ¹⁰
N(1535)S ₁₁	****	1535^{+20}_{-10}	150 ± 25
N(1650)S ₁₁	****	1655^{+15}_{-10}	$140\pm\!30$
N(1675)D ₁₅	****	1675 ± 5	150^{+15}_{-20}
N(1680)F ₁₅	****	1685 ± 5	130 ± 10
N(1700)D ₁₃	***	1700 ± 50	150^{+100}_{-50}
N(1710)P ₁₁	***	$1710\pm\!30$	100^{+150}_{-50}
N(1720)P ₁₃	****	1720^{+30}_{-20}	250^{+150}_{-100}
N(1860)F ₁₅	**	1860^{+100}_{-40}	270 ⁺¹⁴⁰
N(1875)D ₁₃	***	1875 ⁺⁴⁵	200 ± 25
N(1880)P ₁₁	**	1870 ± 35	235 ± 65
N(1895)S ₁₁	**	1895 ± 15	90^{+30}_{-15}
N(1900)P ₁₃	***	1900	250
N(2000)F ₁₅	**	2050 ± 100	$198\pm\!2$
N(2060)D ₁₅	**	2060	$375\pm\!25$
N(2120)D ₁₃	**	2120	330 ± 45

Terry Mart (Universitas Indonesia)

→ E → E → A C HYP-2015 30 / 55

イロト イヨト イヨト イヨト

Extracted background parameters and the resonance hadronic cutoff $\Lambda_{\!R}$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Parameters	Α	В	С	D
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$g_{K\Lambda N}/\sqrt{4\pi}$	-3.37	-3.00	-3.00	-3.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$g_{K\Sigma N}/\sqrt{4\pi}$	0.90	0.90	1.30	1.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$G_{\kappa^*}^V/4\pi$	-0.25	0.12	-0.37	0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{K^*}^T/4\pi$	0.17	-0.08	0.72	0.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$G_{K_1}^V/4\pi$	0.42	0.43	0.23	1.46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{K_1}^{T'}/4\pi$	-0.72	-0.08	-0.91	0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{\Lambda(1600)}/4\pi$	-6.30	-9.00	5.12	8.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{\Lambda(1810)}/4\pi$	10.00	10.00	-4.48	-9.61
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Λ _B (GeV)	0.72	0.89	0.70	0.70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Λ_R (GeV)	2.00	2.0	2.00	1.31
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\theta_{\rm had.}$ (deg)	180	122	56	130
$\begin{array}{ccccccccc} \chi^2 & 15736 & 13192 & 14679 & 11724 \\ N_{data} & 7433 & 7433 & 7433 & 7433 \\ N_{par.} & 74 & 86 & 84 & 96 \\ \chi^2/N_{d.o.f} & 2.14 & 1.77 & 1.97 & 1.58 \end{array}$	$\phi_{\rm had.}$ (deg)	72	180	180	177
$\begin{array}{ccccc} N_{\rm data} & 7433 & 7433 & 7433 & 7433 \\ N_{\rm par.} & 74 & 86 & 84 & 96 \\ \chi^2/N_{\rm d.o.f} & 2.14 & 1.77 & 1.97 & 1.58 \end{array}$	χ^2	15736	13192	14679	11724
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	N _{data}	7433	7433	7433	7433
$\chi^2/N_{\rm d.o.f}$ 2.14 1.77 1.97 1.58	N _{par.}	74	86	84	96
	$\chi^2/N_{\rm d.o.f}$	2.14	1.77	1.97	1.58

Terry Mart (Universitas Indonesia)

・ロン ・四 と ・ 回 と ・ 回

Comparison with experimental data, total cross section

Total CS data are not used in the fit database

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Comparison with experimental data, total cross section near threshold

Oscillation in Model A originates from diff. CS

Comparison with experimental data, diff. cross section & recoil pol.

Terry Mart (Universitas Indonesia)

Kaon Production

< ≣ ► ছ ৩৭৫ HYP-2015 34/55

Comparison with experimental data, diff. cross section & recoil pol.

Terry Mart (Universitas Indonesia)

Kaon Production

▲ E ▶ E 少へC HYP-2015 35/55

イロト イヨト イヨト イヨト

Comparison with experimental data, target & photon polarization

Comparison with experimental data, photon-recoil double polarization

Terry Mart (Universitas Indonesia)

▲ 문 ▶ 문 ∽ Q C HYP-2015 37 / 55

Comparison with experimental data, photon-recoil double polarization

Terry Mart (Universitas Indonesia)

< ≣ ► ৗ ৩৭০ HYP-2015 38/55

イロト イポト イヨト イヨト

Photo and electroproduction of the hypertriton

To calculate the cross section we need the transition current

$$\langle \mathbf{f} | J^{\mu} | \mathbf{i} \rangle = \sqrt{3} \int d^{3}p \ d^{3}q \ \Psi_{\mathbf{f}}^{*}(p,q') J^{\mu}(k^{0},k,k_{1}^{0},k_{1},k_{1}'^{0},k_{1}',q_{K}^{0},q_{K}) \Psi_{\mathbf{i}}(p,q)$$

where the three-body momentum coordinates

$$p = \frac{1}{2}(k_2-k_3)$$
, $q = k_1$,

and the hyperon momentum in the hypertriton

$$q' \equiv k'_1 = k_1 + \frac{m_2 + m_3}{m_1 + m_2 + m_3} Q,$$

with $Q = k - q_K$.

The transition amplitude $M_{\rm fi}$ is obtained from the isobar model.

Terry Mart (Universitas Indonesia)

Kaon Production

Three-body wave functions

The initial wave function Ψ_i (Similar for the final $\Psi_f)$

$$\begin{split} \Psi_{i}(\rho,q) &= \sum_{\alpha = (LSJIJT)} \phi_{\alpha}(\rho,q) \left| \{ (LS)J, (I_{2}^{1})j\} \frac{1}{2}M_{i} \right\rangle \left| (T_{2}^{1})\frac{1}{2}M_{t} \right\rangle \\ &= \sum_{\alpha = (LSJIJT)} \sum_{m_{L}m_{S}m_{I}m_{s}m_{J}m_{j}} \phi_{\alpha}(\rho,q) \left(Lm_{L}Sm_{S}|Jm_{J} \right) \\ &\quad (Im_{I}\frac{1}{2}m_{s}|jm_{j})(Jm_{J}jm_{j}|\frac{1}{2}M_{i}) Y_{m_{L}}^{L}(\hat{\rho})Y_{m_{I}}^{I}(\hat{q})\chi_{m_{S}}^{S}\chi_{m_{s}}^{\frac{1}{2}} \left| (T_{2}^{1})\frac{1}{2}M_{t} \right\rangle , \end{split}$$

The transition current

$$\begin{split} \langle \mathbf{f} | J^{\mu} | \mathbf{i} \rangle &= \sqrt{6} \sum_{\alpha, \alpha'} \sum_{\mathbf{m}, \mathbf{m}'} \sum_{n, m_n} \left(Lm_L Sm_S | Jm_J \right) \left(Lm_L Sm_S | J'm_{J'} \right) \left(lm_l \frac{1}{2} m_S | jm_j \right) \\ &\times \left(l' m_{l'} \frac{1}{2} m_{S'} | j'm_{j'} \right) \left(Jm_J jm_j | \frac{1}{2} M_i \right) \left(J' m_{J'} j'm_{j'} | \frac{1}{2} M_f \right) \left(\frac{1}{2} - m_{S'} \frac{1}{2} m_S | nm_n \right) \\ &\times (-1)^{n - \frac{1}{2} - m_{S'}} \delta_{LL'} \delta_{m_L m_{L'}} \delta_{SS'} \delta_{m_S m_{S'}} \delta_{T0} \\ &\times \int p^2 dp \ d^3 q \ \phi_{\alpha'}(p, q') \ \phi_{\alpha}(p, q) \ Y''_{m_{l'}}(\hat{q}') \ Y'_{m_l}(\hat{q}) \ [j^{\mu}]_{m_n}^{(n)} . \end{split}$$

The $[j^{\mu}]_{m_n}^{(n)} \rightarrow$ elementary operator $\propto \varepsilon_{\mu} j^{\mu}$.

Three-body wave functions

α	L	S	J	1	2 <i>j</i>	27	Р (³ Не)	$P(^3_{\Lambda}H)$
1	0	0	0	0	1	1	44.580	-
2	0	1	1	0	1	0	44.899	93.491
3	2	1	1	0	1	0	2.848	5.794
4	0	1	1	2	3	0	0.960	0.034
5	2	1	1	2	3	0	0.189	0.027
6	1	0	1	1	1	0	0.089	0.004
7	1	0	1	1	3	0	0.198	0.008
8	1	1	0	1	1	1	1.107	-
9	1	1	1	1	1	1	1.113	-
10	1	1	1	1	3	1	0.439	-
11	1	1	2	1	3	1	0.064	-
12	3	1	2	1	3	1	0.306	-
13	1	1	2	3	5	1	1.018	-
14	3	1	2	3	5	1	0.024	-
15	2	0	2	2	3	1	0.274	-
16	2	0	2	2	5	1	0.425	-
17	2	1	2	2	3	0	0.122	0.024
18	2	1	2	2	5	0	0.095	0.018
19	2	1	3	2	5	0	0.205	0.053
20	4	1	3	2	5	0	0.053	0.006
33	4	1	4	4	7	0	0.011	0.004
34	4	1	4	4	9	0	0.009	0.003

Terry Mart (Universitas Indonesia)

< ≣ ► ৗ ৩৭৫ HYP-2015 41/55

イロン イ団 とく ヨン ・ ヨン …

Calculate

$$W^{\mu\nu} = rac{1}{2}\sum_{M_iM_f} \langle \mathrm{f} | J^{\mu} | \mathrm{i}
angle \langle \mathrm{f} | J^{\nu} | \mathrm{i}
angle^* \, ,$$

related to the nuclear structure functions by

$$\begin{array}{lll} W_{\rm T} & = & \frac{1}{4\pi} \left(W_{xx} + W_{yy} \right) , \\ W_{\rm L} & = & \frac{1}{4\pi} \ W_{00} \ , \\ W_{\rm TT} & = & \frac{1}{4\pi} \left(W_{xx} - W_{yy} \right) , \\ W_{\rm LT} & = & \frac{1}{4\pi} \left(W_{0x} + W_{x0} \right) . \end{array}$$

and obtain the cross sections

$$\begin{array}{lll} \displaystyle \frac{d\sigma_{\rm T}}{d\Omega_{K}^{\rm c.m.}} & = & \alpha_{\theta} \, \frac{q_{K}^{\rm c.m.}}{K_{L}} \, \frac{M_{\Lambda}^{\rm H}}{2W} \, W_{\rm T}^{\rm c.m.} \; , \\ \displaystyle \frac{d\sigma_{\rm L}}{d\Omega_{K}^{\rm c.m.}} & = & \alpha_{\theta} \, \frac{q_{K}^{\rm c.m.}}{K_{L}} \, \frac{M_{\Lambda}^{\rm H}}{W} \, W_{\rm L}^{\rm c.m.} \; , \\ \displaystyle \frac{d\sigma_{\rm TT}}{d\Omega_{K}^{\rm c.m.}} & = & \alpha_{\theta} \, \frac{q_{K}^{\rm c.m.}}{K_{L}} \, \frac{M_{\Lambda}^{\rm H}}{2W} \, W_{\rm TT}^{\rm c.m.} \; , \\ \displaystyle \frac{d\sigma_{\rm LT}}{d\Omega_{K}^{\rm c.m.}} & = & -\alpha_{\theta} \, \frac{q_{K}^{\rm c.m.}}{K_{L}} \, \frac{M_{\Lambda}^{\rm H}}{2W} \, W_{\rm LT}^{\rm c.m.} \; , \end{array}$$

イロト イヨト イヨト イヨト

where

$$\frac{d\sigma_{v}}{d\Omega_{K}} \quad = \quad \frac{d\sigma_{T}}{d\Omega_{K}} + \varepsilon_{L} \; \frac{d\sigma_{L}}{d\Omega_{K}} + \varepsilon \; \frac{d\sigma_{TT}}{d\Omega_{K}} \; \cos 2\phi_{K} + \sqrt{2\varepsilon_{L}(1+\varepsilon)} \; \frac{d\sigma_{LT}}{d\Omega_{K}} \; \cos \phi_{K} \; ,$$

_

Kinematics

Required for technical calculation, e.g.,

$$= k_1 (\sin\theta_1 \cos\phi_1 e_x + \sin\theta_1 \sin\phi_1 e_y + \cos\theta_1 e_z),$$

$$= q_K (\sin\theta_K e_x + \cos\theta_K e_z),$$

$$= k_1 + \frac{2}{3} (k - q_K)$$

$$= (k_1 \sin\theta_1 \cos\phi_1 - \frac{2}{3} q_K \sin\theta_K) e_x + (k_1 \sin\theta_1 \sin\phi_1) e_y$$

$$+ (k_1 \cos\theta_1 + \frac{2}{3} k - \frac{2}{3} q_K \cos\theta_K) e_z$$

$$= k' (\sin\theta' \cos\phi' e_x + \sin\theta' \sin\phi' e_x + \cos\theta' e_x)$$

$$= k_1' \left(\sin \theta_1' \cos \phi_1' e_x + \sin \theta_1' \sin \phi_1' e_y + \cos \theta_1' e_z \right)$$

$$\begin{array}{rcl} q_K \cdot k &=& q_K k \, \cos \theta_K \; , \\ k_1 \cdot k &=& k_1 k \, \cos \theta_1 \; , \\ q_K \cdot k_1 &=& q_K k_1 \, \left(\sin \theta_K \, \sin \theta_1 \, \cos \phi_1 + \cos \theta_K \, \cos \theta_1 \right) , \\ k \times q_K &=& kq_K \, \sin \theta_K \, e_Y \; , \\ k_1 \times k &=& k_1 k \, \sin \theta_1 \, \left(\sin \phi_1 e_X - \cos \phi_1 e_Y \right) , \\ k_1' \times k_1 &=& \frac{2}{3} \left(k \times k_1 - q_K \times k_1 \right) , \end{array}$$

・ロト ・ 日 ト ・ 目 ト ・

ъ

Investigate the Off-Shell Assumptions

- both initial and final baryons are on-shell $[k_1^0 = (m_N^2 + k_1^2)^{1/2}, k_1'^0 = (m_Y^2 + k_1'^2)^{1/2}],$
- the initial nucleon is on-shell and the final hyperon is off-shell $[k_1^0 = (m_N^2 + k_1^2)^{1/2}, k_1'^0 = k_1^0 + k_0 E_K],$

- the initial nucleon is off-shell and the final hyperon is on-shell, $[k_1^0 = k_1'^0 + E_K k_0, k_1'^0 = (m_Y^2 + k_1'^2)^{1/2}],$
- both initial and final baryons are off-shell. In this case the static approximation $k_1^0 = m_N$ is used for the initial nucleon, while $k_1'^0 = k_1^0 + k_0 E_K$.

Result

"final on-shell" is closer to exp. data \rightarrow Hyperon in the final state is weakly bound \rightarrow 130 keV

Data from: F. Dohrmann et al., Phys. Rev. Lett. 93, 242501 (2004)

イロト イ理ト イヨト イヨト

T.M. and B. Van Der Ventel, Phys. Rev. C 78, 014004 (2008)

Effects of Fermi motion

- dashed curve → "frozen nucleon" approximation ⟨k₁⟩ = 0
- dash-dotted curve \rightarrow average momentum approximation $\langle k_1 \rangle = -\frac{1}{3}Q$
- solid curve → exact treatment of Fermi motion

T.M. and B. Van Der Ventel, Phys. Rev. C 78, 014004 (2008)

Different elementary models

- dashed curve → Kaon-Maid without missing resonance
- dash-dotted curve → Very simple model
- solid curve → Kaon-Maid with missing resonance

T.M. and B. Van Der Ventel, Phys. Rev. C 78, 014004 (2008)

(4) (5) (4) (5)

Limiting the number of partial waves

The integrations requires heavy numerical calculation. To obtain one point in the plot of observables integrations using $34 \times 16 \times 34 \times 20 \times 30 \times 10 = 110,976,000$ grid points is necessary

 \rightarrow limit the number of partial waves

α	L	S	J	I	2 <i>j</i>	2 <i>T</i>	<i>Р</i> (³ Не)	$P(^3_{\Lambda}\mathrm{H})$
1	0	0	0	0	1	1	44.580	-
2	0	1	1	0	1	0	44.899	93.491
3	2	1	1	0	1	0	2.848	5.794
4	0	1	1	2	3	0	0.960	0.034
5	2	1	1	2	3	0	0.189	0.027
6	1	0	1	1	1	0	0.089	0.004
7	1	0	1	1	3	0	0.198	0.008
8	1	1	0	1	1	1	1.107	-
9	1	1	1	1	1	1	1.113	-
33	4	1	4	4	7	0	0.011	0.004
34	4	1	4	4	9	0	0.009	0.003

Terry Mart (Universitas Indonesia)

Limiting the number of partial waves

full $-\alpha \leq 4$

full -s wave only

< ≥ > <

T.M. Nucl. Phys. A 815, 18 (2009)

Kaon Production

▲ 문 ▶ 문 ∽ Q C HYP-2015 49 / 55 In this approach the ³He wave functions reads

$$\begin{split} \Psi_{J_{b}M_{b}}(\mathbf{r}_{b},\mathbf{R}_{b}) &= \sum_{b=1}^{3} \sum_{t_{a},s_{b},\Sigma_{b}} \sum_{\ell_{b},L_{b},I_{b}} \left[\left[\eta_{1/2}(N_{i}) \eta_{1/2}(N_{j}) \right]_{t_{a}} \eta_{1/2}(N_{k}) \right]_{T,T_{z}} \\ &\times \left[\left[\left[\chi_{1/2}(N_{i}) \chi_{1/2}(N_{j}) \right]_{s_{b}} \chi_{1/2}(N_{k}) \right]_{\Sigma_{b}} \left[\phi_{\ell_{b}}(\mathbf{r}_{b}) \phi_{L_{b}}(\mathbf{R}_{b}) \right]_{I_{b}} \right]_{J_{b}M_{b}}, \end{split}$$

whereas the hypertriton wave function can be written as

$$\begin{split} \Psi_{J_{a}M_{a}}(\mathbf{r}_{a},\mathbf{R}_{a}) &= \sum_{a=1}^{3} \sum_{s_{a},\Sigma_{a}} \sum_{\ell_{a},L_{a},l_{a}} \left[\eta_{1/2}(N_{1}) \eta_{1/2}(N_{2}) \right]_{t=0,t_{z}=0} \\ &\times \left[\left[\left[\chi_{1/2}(N_{1}) \chi_{1/2}(N_{2}) \right]_{s_{a}} \chi_{1/2}(\Lambda) \right]_{\Sigma_{a}} \left[\phi_{\ell_{a}}(\mathbf{r}_{a}) \varphi_{L_{a}}(\mathbf{R}_{a}) \right]_{l_{a}} \right]_{J_{a}M_{a}}. \end{split}$$

• • • • • • • • • • • •

Jacoby coordinate system for three-body states

The relation between the possible configurations is expressed by ³He $\chi_{1/2}^{(b)}(s_b, 1/2) = \sum_{i} U_{1/2}^{(\pm,0)}(s_b, s) \chi_{1/2}^{(3)}(s, 1/2),$ No c = 2c = 3with the "transportation" coefficients $^{3}_{\Lambda}H$ $U_{1/2}^{(+)} = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix},$ N₂ $U_{1/2}^{(-)} = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix},$ c = 3Jacobi coordinates for the possible ³He and ³_AH configura- $U_{1/2}^{(0)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

tions

51/55HYP-2015

A (10) A (10)

By writing the elementary operator as

$$\mathscr{O} = \mathscr{O}_{I} \left(L + i \boldsymbol{\sigma} \cdot \mathbf{K} \right) \boldsymbol{e}^{i \mathbf{t} \cdot \mathbf{r}_{\rho}},$$

where L and **K** are obtained from the isobar model, the nuclear transition matrix element in the laboratory frame can be written as

$$\begin{split} \left\langle \Psi_{J_{a}M_{a}} {}^{3}_{\Lambda} \mathbf{H} \right| \mathscr{O} | \Psi_{J_{b}M_{b}} {}^{3} \mathbf{H} \mathbf{e} \rangle \right\rangle &= \sum_{a,b} \sum_{t} U_{T}^{b \to 3} (t_{b}, t) \\ \times \left\langle \left[\left[\eta_{1/2} (N_{1}) \eta_{1/2} (N_{2}) \right]_{t} \eta_{0} (\Lambda) \right]_{T=0} | \mathscr{O}_{l} | \left[\left[\eta_{1/2} (N_{i}) \eta_{1/2} (N_{j}) \right]_{t_{a}} \eta_{1/2} (N_{k}) \right]_{T=1/2} \right\rangle \\ \times \sum_{\Sigma_{a} \Sigma_{b}} \sum_{sas_{b}} \sum_{lal_{b}} \sum_{s} U_{\Sigma_{b}}^{b \to 3} (s_{b}, s) \left\langle \left[\left[\chi_{1/2} (N_{1}) \chi_{1/2} (N_{2}) \right]_{s_{a}} \chi_{1/2} (N_{3}) \right]_{\Sigma_{a} m_{\Sigma_{a}}} | L+ i \sigma \cdot \mathbf{K} | \\ \times \left[\left[\chi_{1/2} (N_{1}) \chi_{1/2} (N_{2}) \right]_{s_{b}} \chi_{1/2} (N_{3}) \right]_{\Sigma_{b} m_{\Sigma_{b}}} \right\rangle \\ \times \left\langle \left[\phi_{\ell_{a}} (\mathbf{r}_{a}) \phi_{L_{a}} (\mathbf{R}_{a}) \right]_{l_{a}M_{a}} | e^{\mathbf{f} \cdot \mathbf{r}_{p}} | \left[\phi_{\ell_{b}} (\mathbf{r}_{b}) \phi_{L_{b}} (\mathbf{R}_{b}) \right]_{l_{b}M_{b}} \right\rangle, \end{split}$$

The transition matrix

The last bracket can be written as

$$\begin{split} F_{\alpha\beta}(\mathbf{t}) &= \left\langle \left[\phi_{\ell_a}(\mathbf{r}_a) \varphi_{L_a}(\mathbf{R}_a) \right]_{I_a M_a} \middle| e^{i \mathbf{t} \cdot \mathbf{r}_{\rho}} \middle| \left[\phi_{\ell_b}(\mathbf{r}_b) \varphi_{L_b}(\mathbf{R}_b) \right]_{I_b M_b} \right\rangle \\ &= \sum_{\lambda, \mu} i^{\lambda} f_{I_a I_b}^{(\lambda)}(t) Y_{\lambda \mu}(\hat{\mathbf{x}}) \left(I_b M_b \lambda \mu \middle| I_a M_a \right) \,, \end{split}$$

with

$$f_{I_aI_b}^{(\lambda)}(t) = \sum_n A_n(\lambda, I_a, I_b) \left(\frac{\pi}{u_n}\right)^{\frac{3}{2}} \left(\frac{t}{2u_n}\right)^{\lambda} e^{-t^2/4u_n} ,$$

where $A_n(\lambda, I_a, I_b)$ is obtained from the Gaussian expansion method: E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. **51**, 223 (2003)

$$\frac{d\sigma}{d\Omega} \propto \left| \left\langle \Psi_{J_a M_a} (^3_{\Lambda} \mathrm{H}) | \mathscr{O} | \Psi_{J_b M_b} (^3 \mathrm{He}) \right\rangle \right|^2$$

Conclusion

- New model for kaon photoproduction which includes spin 3/2 and 5/2 nucleon resonances has been proposed
- The consistent gauge-invariant formulation of the spin 3/2 and 5/2 interactions leads to a better agreement with experimental data
- A reliable elementary model is required for accurate prediction of the hypernuclear photo- and electroproduction
- A new framework has been established to calculate the hypernuclear photo- and electroproduction

THANK YOU FOR YOUR PATIENCE

Terry Mart (Universitas Indonesia)

Kaon Production

▲ E ▶ E ∽ Q C HYP-2015 55 / 55