High-resolution decay-pion spectroscopy of ⁴_{\Lambda}H hypernuclei

P. Achenbach¹, S. Aulenbacher¹, J. Beričič², S. Bleser^{1,3}, R. Böhm¹, D. Bosnar⁴,
L. Correa⁵, M. O. Distler¹, A. Esser¹, H. Fonvieille⁵, I. Friščić⁴, Y. Fujii⁶,
M. Fujita⁶, T. Gogami⁶, H. Kanda⁶, M. Kaneta⁶, S. Kegel¹, Y. Kohl¹,
W. Kusaka⁶, A. Margaryan⁷, H. Merkel¹, M. Mihovilovič¹, U. Müller¹,
S. Nagao⁶, S. N. Nakamura⁶, J. Pochodzalla¹, A. Sanchez Lorente^{1,3},
B. S. Schlimme¹, M. Schoth¹, F. Schulz¹, C. Sfienti¹, S. Širca², M. Steinen^{1,3},
Y. Takahashi⁶, L. Tang⁸, M. Thiel¹, K. Tsukada⁶, A. Tyukin¹, A. Weber¹
(A1 Collaboration)

¹Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany ²Department of Physics, University of Ljubljana, and Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia

³Helmholtz Institute Mainz, D-55099 Mainz, Germany
 ⁴Department of Physics, University of Zagreb, HR-10002 Zagreb, Croatia
 ⁵LPC-Clermont, Université Blaise Pascal, CNRS/IN2P3, F-63177 Aubière Cedex, France
 ⁶Department of Physics, Tohoku University, Sendai, 980-8571, Japan
 ⁷Yerevan Physics Institute, 375036 Yerevan, Armenia
 ⁸Department of Physics, Hampton University, Hampton, Virginia 23668, USA

The structure of light Λ -hypernuclei and the precise determination of Λ binding (separation) energies has been in the focus of recent experimental and theoretical programs. In 2012, the first high-resolution spectroscopy of pions from decays of stopped $^4_{\Lambda}$ H hypernuclei was performed by the A1 Collaboration at the Mainz Microtron MAMI, Germany [1]. The binding energy of $^4_{\Lambda}$ H was deduced from the two-body decay mode $^4_{\Lambda}$ H $\rightarrow \pi^- + ^4$ He to be $B_{\Lambda} = 2.12 \pm 0.01$ (stat.) ± 0.09 (syst.) MeV with respect to the 3 H+ Λ mass. This value is 0.08 MeV different from emulsion data, for which the most complete compilation found $B_{\Lambda} = 2.04 \pm 0.04$ MeV using only three-body decay modes [2].

In the year 2014 the A1 experiment was continued with a better control of the systematic uncertainties, with better background suppression, and with higher luminosities. Energy-loss fluctuations in the target chamber windows could be eliminated by directly coupling the spectrometers to the chamber. A tungsten alloy collimator was placed behind the Be target to reduce the background from quasi-free produced Σ^- decays in flight. In order to check systematic momentum uncertainties the acceptance of two spectrometers covered the $^4_\Lambda \mathrm{H}$ decay-momentum region simultaneously. Variations of the magnetic fields of the spectrometers contributed only $\delta p_{stabil.} < 0.004\,\mathrm{MeV/}c$ as compared to $0.04\,\mathrm{MeV/}c$ in 2012. Different calibration measurements with thin tantalum targets over a time of two days confirmed a calibration stability within $\delta p_{stabil.} < 0.02\,\mathrm{MeV/}c$. A preliminary analysis of these data confirmed in both spectrometers the mono-energetic line from pionic $^4_\Lambda \mathrm{H}$ decays stopped in Be targets of two different thicknesses. A systematic study of the measured binding energy of $^4_\Lambda \mathrm{H}$ hypernuclei is presented.

- [1] A. Esser et al. (A1 Collaboration), Phys. Rev. Lett. 114, 232501 (2015)
- [2] Jurić, M. et al., Nucl. Phys. **B52**, 1 (1973)

Supported by DFG (SFB 1044), Carl Zeiss, European Community FP7, U.S.-DOE, and JSPS.