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Background

Question: How can we constrain the nΛ interaction, when we have

only limited data regarding pΛ scattering.?

Few-body hypernuclei:

• Λ hypernuclei provide weak constraints

– 3
ΛH is weakly bound [BΛ(3

ΛH = 0.13± 0.05 MeV]; small sepa-

ration energy implies that it is one of the largest halo nuclei.

– The A=4 isodoublet seems to exhibit significant Charge Sym-

metry Breaking, some 2-3 times that in the 3H-3He isodoublet.

– The uncertainty in the pΛ data implies a possible wide range

of variation in the nΛ interaction.
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• The HypHI collaboration reported a bound nnΛ system (3
Λn).

– C. Rappold et al., Phys. Rev. C 88, 041001(R) (2013).

– They observed both two-body and three-body decay modes.

– 3
Λn would be the lightest neutron-rich hypernucleus observed.

– Such a bound state would provide a significant constraint on

the nΛ interaction; the nn interaction is well known.

– Such a bound state could be observed directly in a 3H(e,e’K+)3
Λn

experiment at JLab, although a weakly bound system would

imply a small cross section.

– Alternative reactions at J-PARC would be 3H(K−, π0)3
Λn and

3He(K−, π+)3
Λn.



Background (cont.)

However, a 3
Λn bound state has been strongly questioned:

• H. Garcilazo and A. Valcarce, Phys. Rev. C 89 057001 (2014).

• E. Hiyama et al., Phys. Rev. C 89 061302 (2014).

• A. Gal and H. Garcilazo, Phys. Lett. B736, 93 (2014).

Simple physics suggests that one would not expect a bound state.

• The hypertriton is barely bound and its core is a deuteron.

• A 3
Λn bound state would have as a core an unbound di-neutron.
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Simple physics suggests that one would not expect a bound state.

• The hypertriton is barely bound and its core is a deuteron.

• A 3
Λn bound state would have as a core an unbound di-neutron.

Could there instead exist a nnΛ three-body res-
onance?

One might still be able to utilize the electro-production reaction (or

the HypHI reaction or the J-PARC strangeness-exchange reaction)

to constrain the nΛ interaction.



Our Three-Body Model for nnΛ

• pairwise s-wave interactions of rank one separable form

V (k, k′) = g(k)Cg(k′) g(k) = 1/(k2 + β2)

• nn potential strength and range fitted to effective range

parameters:

ann = -18.9 ± 0.4 fm and rnn = 2.75 ± 0.11 fm

• nΛ strength and range fitted to the Nijmegen model D values:

as = -2.03 ± 0.32 fm and rs = 3.66 ± 0.32 fm

at = -1.84 ± 0.10 fm and rt = 3.32 ± 0.11 fm

M. M. Nagels, T. A. Rijken, & J. J. deSwart, PRD 15, 2547 (1977)

• Separable potentials allow us to simply analytically continue onto

the second sheet of the energy plane.

• We search for the resonance poles by examining the eigenvalue

specturm of the kernel of the Faddeev equations for the nnΛ

system

• We earlier used a similar technique to explore Λ− d scattering:

I. R. Afnan and B. F. Gibson, PRC 47, 1000 (1993).



Potential Resonances in the nΛ System

We must analytically continue the Faddeev equations onto the second

energy sheet.

• For two identical Fermions interacting via Yamaguchi pairwise

potentials, the homogeneous integral equation is of the form

λn(E)φn,kα(q, E) =
∑
kβ

∞∫
0

dq′ KJT
kα,kβ

(q, q′;E) φn;kβ(q′, E) , (1)

where the kernel of the integral equation is given by

KJT
kα,kβ

(q, q′;E) = ZJT
kα,kβ

(q, q′;E) τkβ [E − εβ(q′)] q′2 . (2)

• We analytically continue onto the second energy sheet by utiliz-

ing the transformation

q → q e−iθ q′ → q′ e−iθ with θ > 0 . (3)

• One limitation on the rotation angle θ is imposed by singularities

of the kernel; the Born amplitude ZJT
kα,kβ

requires that θ < π
2 ,

which gives us the region=(E) < 0 on the second Riemann sheet.

The other source of singularity is the quasi-particle propagator

τkβ [E− εβ(q′)], but because there are no two-body bound states,

this does not limit the rotation.



Results of the Eigenvalue Search

Let us consider a specific example: we utilize the nn and the 1S0 and
3S1 nΛ potentials noted previously.

• We searched in the complex energy plane for the largest eigen-

value of the kernel of 1 and found a pole at:

E = −0.154−0.753 iMeV with eigenvalue λ(E) = 1.0000−0.0001 i .

• Because <(E) < 0, this pole corresponds to a sub threshold

resonance, one that lies below the breakup threshold in a region

inaccessible by experiment.
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Because the pole lies just below the breakup threshold, we may ask

how easy it might be to convert the pole into an observable resonance

or even a bound state.

• We scale the strength of the 1S0 and 3S1 nΛ potentials by the

factor s.

• We follow the path of the pole as it turns into a ”resonance” and

then into a bound state.

• We observe that a change in strength of ∼4% produces a reso-

nance above the three-body breakup threshold.

• A change of 25% is required to produce a nnΛ bound state.



Trajectory of the nnΛ ”Resonance” Pole

In the figure one follows the trajectory of the ”resonance” pole

as the strength s of the nΛ interaction is increased from a value of

1.0 in increments (∆s) of 0.025. One starts from a sub threhsold

resonance at E = −0.107 − 0.622 i MeV and obtains a resonance

around s ' 1.04 and then a bound state with energy E = −0.068

MeV at s = 1.250 and E = −0.195 MeV for s = 1.275.
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