Mean-Field and Beyond Mean-Field Calculations of Λ Hypernuclei

P. Veselý¹, E. Hiyama², J. Mareš¹

¹Institute of Nuclear Physics, Czech Academy of Sciences, 250 68 Řež, Czech Republic
²RIKEN Nishina Center, Wako 351-0198, Japan

The studies of Λ hypernuclei has been mainly focused on light systems where few-body or shell-model techniques are applicable. It is, however, desirable to develop also reliable many-body approaches suitable for the description of medium and heavier hypernuclear systems.

In this work we construct a self-consistent mean field of the core nucleus [1,2] from the realistic chiral nucleon-nucleon (NN) potential [3] and additional density dependent term mimicking the effect of 3-body interactions. The Λ hypernucleus is then described using the Λ -nucleon (Λ N) interaction, assuming the Lambda hyperon interacts with the mean field of the core nucleus. So far we have applied in our calculations a phenomenological Λ N contact force [4] but in near future we intend to use more realistic Λ N interactions.

Further, we explain how to proceed beyond the mean-field description of hypernuclei. We discuss in detail the effect of (Λ) particle-phonon coupling. We demonstrate how to modify our approach for systems of one Λ plus odd- Λ core nucleus.

- D. Bianco, F. Knapp, N. Lo Iudice, P. Veselý, F. Andreozzi, G. De Gregorio, A. Porrino,
 J. Phys. G: Nucl. Part. Phys. 41, 025109, (2014)
- [2] P. Veselý, G. De Gregorio, F. Knapp, N. Lo Iudice, D. Bianco, F. Andreozzi, A. Porrino, Journal of Physics: Conference Series 533, 012014, (2014)
- [3] A. Ekstrom, G. Baardsen, C. Forssen, G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T. Papenbrock, J. Sarich et al., Phys. Rev. Lett. 110, 192502 (2013)
- [4] H.-J. Schulze, E. Hiyama, Phys. Rev. C 90, 047301 (2014)