

Measurement of Hyper-Triton Lifetime at STAR

Yifei Xu

for the STAR Collaboration

Outline

- Motivation
- RHIC and STAR
- Dataset
- Invariant mass result
- Lifetime
- Branching ratios
- Summary

Motivation

The first hyper nucleus was observed in 1952.

STAR Collaboration, SCIENCE 328, 58 (2010)

Binding energy and lifetime are sensitive to YN interaction.

- ★ Hypertriton is the hyper nucleus with lowest A.
- ★ Hypertriton could be abundantly produced at RHIC.

★ Measurement of hypertriton lifetime at STAR.

中國科学院上海龙的物理研究所 Shanghai Institute of Applied Physics, Chinese Academy of Sciences

3

Relativistic Heavy Ion Collider

中国科学院上海应用物理研究所 Shanghai Institute of Applied Physics, Chinese Academy of Sciences

SINA

Solenoid Tracker At RHIC

STAR TPC provides momentum and energy loss information.

³He, d, p and π can be identified well at STAR, which makes it possible to reconstruct hyper-tritons through its 2 main decay channels:

 ${}^3_{\Lambda}H \rightarrow {}^3He + \pi^ {}^3_{\Lambda}H \rightarrow d + p + \pi^-$

Dataset

Channel	Theoretical B.R.
³ He+ π ⁻	24.88%
d+p+ π -	40.15%
Λ (virtual) π dca3	*Physical Review C.57.1595(1998) dca1 3-body topological map

2-body	Event #
Run10 7.7	3.98 M
Run10 11.5	10.98 M
Run11 19.6	31.15 M
Run11 27	48.65 M
Run10 39	118.02 M
Run10 200	222.73 M
Total	435.51 M
3-body	Event #
Run11 27	53.31 M
Run10 39	134.41 M
Run11 200	516.87 M
Total	704.59 M

Invariant Mass

Yifei Xu

Invariant mass results for 2-body and 3-body analyses.

Measured Lifetime

With 2-body and 3-body data, we can calculate χ^2 distribution with $c\tau$.

Hypertriton lifetime from combined channels :

$$\tau = 155^{+25}_{-22}(stat) \pm 29(sys) \ ps$$

We take into account two kinds of contributions to systematic errors:

- binning effect
- different (V0) cuts.

Measured Branching Ratio

Branching ratio can be calculated by decay law : $f(t) = N_0 B r e^{-\frac{t}{\tau}}$

*Physical Review C.57.1595(1998)

Yifei Xu

9

World Data

* The same method is applied for calculation of STAR free Λ lifetime.

10

Summary

In this analysis, with 2-body and 3-body decay channels, we calculated the lifetime of hyper triton as well as the ratio of 2 branching ratios.

For lifetime result :

$$\tau = 155^{+25}_{-22}(stat) \pm 29(sys) \ ps$$

For branching ratio result :

$$\frac{B.R.(d+p+\pi^{-})}{B.R.(^{3}He+\pi^{-})} = 2.41^{+0.39}_{-0.34}$$

Theoretical :
$$\left(\frac{40.15}{24.88} = 1.61\right)$$

11

*Physical Review C.57.1595(1998)

Backup

Theoretical Decay Modes*

	Channel	Γ(S ⁻¹)	BR(%)	Lifetime(ps)
	³He+ π -	9.73E+08	24.88	-
	³ H+ π ⁰	4.87E+08	12.45	-
Mesonic	d+p+ π ⁻	1.57E+09	40.15	-
Decay	d+n+ π ⁰	7.83E+08	20.02	-
	p+p+n+ π ⁻	2.45E+07	0.63	-
	p+n+n+ π ⁰	1.23E+07	0.31	-
Non-Mesonic	d+n	6.70E+06	0.17	-
Decay	p+n+n	5.70E+07	1.46	-
Total		3.91E+09	100	256

*Physical Review C.57.1595(1998)

13

Topological Cuts — 2body

	Run10 7.7GeV	Run10 11.5GeV	Run11 19.6GeV	Run11 27GeV	Run10 39GeV	Run10 200GeV
dca2	>0.9	>0.8	>1.2	>1.0	>0.7	>1.0
dca12	<1.0	<0.8	<0.9	<1.0	<1.0	<0.8
LambH3 DCA	<1.0	<0.8	<1.0	<1.0	<0.9	<1.0
LambH3 DL	>2.4	>2.1	>3.8	>3.5	>2.0	>3.3

In 2-body: dau1 = helium3 ; dau2 = pion In 3-body: dau1 = deuteron; dau2 = proton; dau3 = pion

Topological Cuts — 3body

	27GeV	39GeV	200GeV
dca2*	≥1.0;≥0.75;≥0.5	≥1.0;≥0.75;≥0.5	≥1.0;≥0.75;≥0.5
dca3*	≥2.5;≥2.00;≥0.8	≥2.5;≥2.00;≥0.8	≥2.5;≥2.00;≥0.8
dca12	<1.0	<1.0	<0.8
dca13	<1.0	<1.0	<0.8
dca23	<0.8	<0.8	<0.8
dca1-xv0123	<1.2	<1.2	<1.0
dca2-xv0123	<1.2	<1.2	<1.0
dca3-xv0123	<1.2	<1.2	<1.0
Lambda DL	[2.4,150]	≥2.4	[2.4,150]
Lambda DCA	[0,0.9]	[0,1.0]	[0.6,1.6]
Lambda Mass	<1.112	<1.110	<1.111
LambH3 DL	[2.4,150]	[2.4,150]	[2.4,150]
LambH3 DCA	<1.0	<1.0	<0.6

*Depends on momentum of virtual lambda.(<0.8;[0.8,3.6];>3.6)

中國科学院上海龙的物理研究所 Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Scale Number of Events

	Helium-3 Yield (/M)	
Run10 7.7	5101	R
Run10 11.5	1530	R
Run11 19.6	504	R
Run11 27	272	R
Run10 39	134	R
Run11 200	61.6	R

The analysis for 2 channels are using different dataset. So helium-3 yield data are used to scale the total number of events.

2-body	Event #	Scaled #
Run10 7.7	3.98 M	151.51 M
Run10 11.5	10.98 M	125.37 M
Run11 19.6	31.15 M	117.16 M
Run11 27	48.65 M	98.75 M
Run10 39	118.02 M	118.02 M
Run10 200	222.73 M	102.39 M
Total	435.51 M	713.20 M
3-body	Event #	Scaled #
Run11 27	53.31 M	108.21 M
Run10 39	134.41 M	134.41 M
Run11 200	516.87 M	237.61 M
Total	704.59 M	480.23 M

Systematic Uncertainty

We take into account two kinds of contributions to systematic errors: binning effect and different cuts.

2-Body	Original	Current	c τ(cm)	lifetime(ps)	Uncertainty(%)
			3.69	123	
Binning	4MeV	2MeV		116	5.7
DL & dca(pi)	>2.4&>0.8	>4.0&>1.2		120	2.4
dca12 & v0dca	<1.0&<1.0	<0.7&<0.7		130	5.7
					8.4

3-Body	Original	Current	c≀(cm)	lifetime(ps)	Uncertainty(%)
			6.84	229	
Binning	4 MeV	2 MeV	7.00	234	2.2
dca 23	up-limit	up-limit -0.3	7.97	266	16.2
dca Lambda	up-limit	up-limit -0.2	6.72	225	1.7
					16.4

Combined systematic uncertainty : 18.4%

17

Yifei Xu

FAR

STAR Free Λ Lifetime

Measurement of lifetime of free lambda using same method as hyper triton.

Result from 2-body analysis.

18