

Possible measurement of the lifetime of Hydrogen hyperisotopes at J-PARC and JLab

Elena Botta

INFN - Sezione di Torino and Torino University - Physics Department

Outline

- starting point
- present experimental knowledge
- how to measure $\tau({}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H)$
 - at J-PARC
 - at JLab
- evaluation: rates, beam times, statistics, apparatuses (feasibility, requirements)

starting point

Non to sol the sol to sol the sol to sol the sol to sol to

ANC)

IL NUOVO CIMENTO

Vol. Ν.

Status and perspectives of experimental studies on hypernuclear weak decays

E. $BOTTA(^1)(^2)(^*)$, T. $BRESSANI(^2)$, S. $BUFALINO(^1)(^2)$, A. $FELICIELLO(^2)$

- ⁽¹⁾ Dipartimento di Fisica, Università di Torino Torino, Italy
- ⁽²⁾ INFN. Sezione di Torino Torino. Italu

Summary. — From the first beginning the weak decay of Λ -hypernuclei has been considered a very interesting physics case, since its study could shed light on several topics in nuclear and particle physics, among which the $\Lambda N \to NN$ four-baryon weak interaction not otherwise accessible. However, only in the last decade a substantial series of reliable experimental data samples has been produced thanks to the synergic effort of dedicated facilities at some laboratories in the world. The existing pattern of data on lifetimes, partial decay widths for mesonic and non-mesonic decay (both one- and two-nucleon induced) and energy spectra and correlations of the emitted particles is reviewed and compared with existing theoretical predictions. Updated tables and plots summarizing the existing experimental information are presented. For each item a brief account of possible new experimental efforts, approved, planned or futuristic is given. From these analyses the full pattern of partial decay widths for ${}^{4}_{\Lambda}$ He, ${}^{5}_{\Lambda}$ He, ${}^{11}_{\Lambda}$ B and ${}^{12}_{\Lambda}$ C is discussed. Rare decay channels and polarization studies are also briefly analyzed.

PACS 21.80.+a - 25.80.Pw.

present experimental knowledge

		B_{Λ} (MeV)	τ (ps)	
CSB	Λ		263.2±2.0 CPC 38(9) (2104) 090001	
	$^{3}\Lambda$ H	0.13±0.05±0.04 Juric NPB 52 (1973) 1	216 ⁺¹⁹ ₋₁₆ RNC	
	⁴ _A H	2.08±0.08 Juric NPB 52 (1973) 1 2.04±0.04±0.04 Davis, NPA 754 (2005) 1 2.12±0.01±0.09 Esser PRL 114 (2015) 232501	192 ⁺²⁰ ₋₁₈ RNC	CSB
	⁴ _A He	2.39±0.03±0.04 Davis, NPA 754 (2005) 1 $\Delta B(1^+ \rightarrow 0^+) = 1.406\pm0.002\pm$ 0.003 (Yamamoto arXiv:a508.00376)	250±18 RNC	
	⁵ ∧He	3.12±0.02 Davis, NPA 754 (2005) 1	273±10 RNC	

puzzling situation: A=1, 3, 4, 5 lifetime A=4 I_3 =-1/2 vs I_3 =1/2

Β_Λ &&

& lifetime

$^{3}\Lambda H$

- ions & HI: precise, not completely consistent
- new precise dedicated counter experiments to find out eventual systematic effects due to measurement method

${}^{4}{}_{\Lambda}\mathsf{H}$

- new precise dedicated counter experiments
 → resolution below 10% (3-5%)
- UR-HI: statistics, schedule ...?

• how to measure $\tau({}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H)$

- counter experiments, MM spectra
- direct time delayed spectra technique (t_{decay} t_{react})
- production reaction detection to identify the hypernucleus (MM) and measure t_{react} (HI/Ions) \rightarrow trigger, apparatus ($\epsilon, \Delta\Omega$)
- coincidence detection of MWD products (2b&3b) (t_{decay})
 → coincidence apparatus (ε', ΔΩ')
- good MM spectroscopy resolution
- start and stop time counters with very good time resolution
- energy measurement for decay charged particles (π , p)
- background reactions ($\Lambda_{q.f.}$ production and decay, ...) rejection
- prompt reaction for system time response function (σ ~50 ps)

H.Bhang et al., Jou. Kor. Phys. Soc., 59 (2011) 1461, ¹²C target

• how to measure $\tau({}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H)$ at J-PARC

• π , K beams $\rightarrow_{\Lambda}^{3}$ H, $_{\Lambda}^{4}$ H produced through associated production reaction:

 π^{-} (1.05 GeV/c) + ^{3,4}He → ^{3,4}_ΛH (~400 MeV/c) + K⁰(~700 MeV/c) forw. dir.

- E22 Proposal: ΛN weak interaction in A=4 Λ -hypernuclei (Γ_n , Γ_p , α^{NM}_p , $\Delta I=1/2$) K1.8 beamline, 1.1 GeV/c, ⁴He (π^+ , K⁺) ⁴_{Λ}He, beam & SKS spectrometer & decay arm (E15 CDC without magnet)
- Day-2 experiment to study NMWD of ⁴_ΛH production reaction ⁴He (π⁻, K⁰) ⁴_ΛH isospin simmetric K⁰ from K_s decay (π⁺ π⁻: 68.95%) → small detection efficiency → HIHR (?)

Values	Parameter in Eqs. (5)	
1.1 GeV/c		п
1×10^9 /spill	N_{Beam}	Ň
3.4 sec/spill	T_{Cycle}	
$1 g/cm^2$	N_{Target}	oro
$10 \ \mu \mathrm{b/sr}$	$d\sigma/d\Omega$	ğ
arada $0.02 \ \mathrm{sr}$	Ω_{SP}	SS
nm. 0.03	$arepsilon_{SP}$	Ē
0.5	$arepsilon_{Anal}$	
	Values 1.1 GeV/c $1 \times 10^9 \text{ /spill}$ 3.4 sec/spill $1 g/cm^2$ $10 \mu \text{b/sr}$ arada 0.02 sr nm. 0.03 0.5	ValuesParameter in Eqs.(5)1.1 GeV/c N_{Beam} 1×10^9 /spill N_{Beam} $3.4 \sec/spill$ T_{Cycle} $1 g/cm^2$ N_{Target} $10 \ \mu b/sr$ $d\sigma/d\Omega$ arada 0.02 sr Ω_{SP} nm. 0.03 ε_{SP} 0.5 ε_{Anal}

$$\begin{aligned} \text{Yield} ({}_{\Lambda}^{4}\text{H}) &= N_{Beam} \times \frac{N_{Target}}{4} \times N_{A} \times \frac{d\sigma}{d\Omega} \times \Omega_{SP} \times \varepsilon_{SP} \times \varepsilon_{Anal} \times \frac{Time}{T_{Cycle}} \\ &\sim 11.4\text{k} {}_{\Lambda}^{4}\text{H}/\text{day.} \end{aligned}$$

$$\pi_{\text{react}}^{-} + {}^{3.4}\text{He} \rightarrow {}^{3.4}_{\Lambda}\text{H} + \text{K}^{0} \qquad {}^{3.4}_{\Lambda}\text{H} \rightarrow {}^{4}\text{He} + \pi_{\text{decay}}^{-}/\text{d} + p + \pi_{\text{d}}^{-}/\text{d} + p +$$

~ 2 10¹/day 10⁷ π ⁻/spill \rightarrow 10-20 beam days (present beam) 2-4 10² entries

 $Yield({}^{3}_{\Lambda}H) = Yield({}^{4}_{\Lambda}H) * 4/3 * [d\sigma/d\Omega]_{3}/[d\sigma/d\Omega]_{4}$

= Yield(${}^{4}_{\Lambda}$ H) * 0.1 → 11.4 10²/day 10⁹ π⁻/spill → 11.4 10¹/day 10⁸ π⁻/spill → 11.4 /day 10⁷ π⁻/spill

 $\text{Yield}(^{3}_{\Lambda}\text{H} \rightarrow \text{d} + \text{p} + \pi^{-}) = \text{Yield}(^{3}_{\Lambda}\text{H}) * \text{BR} * \Omega_{\pi} * \varepsilon_{\pi} * \varepsilon_{\text{analysis}}$

~ Yield(³_ΛH) * **0.4** * 0.5 * 1 * **0.4** ~ Yield(³_ΛH) * **0.08** Kamada PRC 57 (1998) 1595 && Λ BR

~ 1.0 10³/day 10⁹ π ⁻/spill && 1 \rightarrow 1-2 days \rightarrow 1-2 10³ entries

- ~ 1.0 10²/day 10⁸ π^{-} /spill && 1 \rightarrow 5-10 days \rightarrow 0.5-1 10³ entries
- ~ 1.0 10¹/day 10⁷ π^{-} /spill && 1 \rightarrow 10-20 days \rightarrow 1-2 10² entries

~ 1.0 10²/day 10⁹ π^{-} /spill && 0.1 \rightarrow 5-10 days \rightarrow 0.5-1 10³ entries ~ 1.0 10¹/day 10⁸ π^{-} /spill && 0.1 \rightarrow 10-20 days \rightarrow 1-2 10² entries

Apparatus hints/ideas

(high K1.8/HIHR momentum and MM resolution performances)

 LHe target, E15 He target cell, very thin material layers (threshold on π– momentum ~ 70 MeV/c) inserted inside the inner CDC wall

"free space" between LHe target outer wall and CDC inner wall ~ 0.4 cm radius

- time counters: start (T0), small segmented scintillator system (10⁷/cm² s vs π⁻/spill) stop (T1), scintillator barrel (12-15 slabs), 3 mm thick, 15 cm length, ~80-100 ps σ res., located between LHe target and CDC (r~7.8 cm)
- CDC used by E22 to reject n background due to MWD π^- absorption at rest
 - \rightarrow track straight charged decay particles \rightarrow vertex and PId
 - \rightarrow use as tracker if magnet is present (E15) \rightarrow vertex, π^{-} momentum

and Pld

- range counter: π⁻ energy measurement and PId (dE/dx vs E, R, hit position) (10 layers, 5.5 cm tot)
 - \rightarrow energy resolution < 4-5 MeV FWHM
 - \rightarrow PId contamination < 1%

• how to measure $\tau({}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H)$ at JLab

• e beams \rightarrow produce ${}^{3}{}_{\Lambda}H$, ${}^{4}{}_{\Lambda}H$ through electroproduction reaction:

F. Cusanno - HYPX

MM calibration: $p(e, e' K+)\Lambda$

- Proposal JLab Hypernuclear Collaboration (JLab PAC43)
 - ΛN interaction & charge-zero exotic hyp. (n Λ , nn Λ)
 - CSB A=4
 - B_{Λ} for heavier hypernuclei (A=40-50, 208)

cryogenic gaseous ^{3,4}He target: thickness ~ 58 mg/cm² (200 psi, 20 cm length \rightarrow ρ ~ 0.0029 g/cm³ ~ 20 * ρ_{qas})

Beam energy (12 GeV mode, 2-passes, injector energy included)	4.5238 GeV	
E' (HRS) central angle (horizontal and vertical bites)	$7^{\circ}(\pm 1.5^{\circ} \text{ and } \pm 2.5^{\circ})$	+7
E' (HRS) central momentum (percentage bite)	3.0296 GeV/c (±4.0%)	
Virtual photon central angle ($\phi=\pi$)	14°	+1
Virtual photon energy range	1.37 – 1.62 GeV	
Virtual photon momentum range	1.42 – 1.70 GeV/c	
Average Q ²	$-0.21 (GeV/c)^2$	
K ⁺ (HKS) central angle (horizontal and vertical bites)	14° (±4.5° and ±2.5°)	
K ⁺ (HKS) central momentum (percentage bite)	1.2 GeV/c (±12.5%)	

new septum magnets

Hall A & C results

Target and objective	Beam	Target	Assumed	Expected	Num. of	Req.	B.G.	S/N	Comments
hypernucleus	current	thickness	cross	Yield	events	beamtime	Rate	(±1σ)	
	(µA)	(mg/cm^2)	section	(/hour)		(hours)	(/MeV/h)		
			(nb/sr)						
3 He ($^{3}_{\Lambda}$ H)	20	58	5	1.3	100	80	0.08	18	Gas, Reference
4 He ($^{4}_{\Lambda}$ H)	20	58	20	3.8	1000	266	0.07	57	Gas

Yield(${}^{4}_{\Lambda}H$, ${}^{3}_{\Lambda}H$) production

very thin target \rightarrow negligible energy loss, good momentum resolution \rightarrow good S/N

 $\text{Yield}({}^{4}_{\Lambda}\text{H} \rightarrow {}^{4}\text{He} + \pi^{-}) = \text{Yield}({}^{4}_{\Lambda}\text{H}) * \text{BR} * \Omega_{\pi} * \varepsilon_{\pi} * \varepsilon_{\text{analysis}}$

= Yield(⁴_{\lambda}H) * 0.49 * 0.5 * 1 * 0.8 ~ 18/day

500-1000 entries: 30-60 days

 $\text{Yield}(^{3}_{\Lambda}\text{H} \rightarrow {}^{3}\text{He} + \pi^{-}) = \text{Yield}(^{3}_{\Lambda}\text{H}) * \text{BR} * \Omega_{\pi} * \varepsilon_{\pi} * \varepsilon_{\text{analysis}}$

= Yield(${}^{3}_{\Lambda}$ H) * 0.4 * 0.5 * 1 * **0.4** ~ 2.5/day

100-500 entries: 40-200 days

Wyp

more dense target: $\rightarrow \rho_{dense}$

Dohrmann, PRL 93, 242501 high density cryogenic targets ³He: 0.310 g/cm² $\rightarrow \rho_{dense} \sim 0.0775$ g/cm³, ⁴He: 0.546 g/cm² $\rightarrow \rho_{dense} \sim 0.1365$ g/cm³

```
\begin{aligned} \text{Yield}({}^{4}_{\Lambda}\text{H}, {}^{3}_{\Lambda}\text{H})_{\text{dense}} &= \text{Yield}({}^{4}_{\Lambda}\text{H}, {}^{3}_{\Lambda}\text{H}) * \rho_{\text{dense}} / \rho \\ {}^{3}_{\Lambda}\text{H}: 1.3/\text{hour} \rightarrow \sim 35/\text{hour} \sim 800/\text{day} \\ {}^{4}_{\Lambda}\text{H}: 1.3/\text{hour} \rightarrow \sim 179/\text{hour} \sim 4300/\text{day} \end{aligned}\begin{aligned} \text{Yield}({}^{4}_{\Lambda}\text{H}, {}^{3}_{\Lambda}\text{H} \text{ decay})_{\text{dense}}: \\ {}^{3}_{\Lambda}\text{H}: \sim 60/\text{day} \qquad 500\text{-}1000 \text{ entries}: 8\text{-}15 \text{ days} \\ {}^{4}_{\Lambda}\text{H}: \sim 800/\text{day} \qquad 1000\text{-}2000 \text{ entries}: 2\text{-}3 \text{ days} \end{aligned}
```

Drawbacks:

- worse momentum resolution (e', K+, π-), worse spectroscopy S/N

- higher energy loss \rightarrow higher momentum threshold on MWD π -

Apparatus hints/ideas

- cryogenic gaseous He target: higher density needed ٠
 - common (gas/liquid/solid) target chamber, external diameter 60-90 cm ...??
 - define dimensions, smaller diameter or T1 inside the chamber
- T0: probably not a direct measurement (I=20 μ A), t_{react} calculated from time signals on the K+ trajectory or from beam clock signal (DC?)
- ٠
- T1: scintillator barrel (12-15 slabs?), 20 cm icing..., hollow cylindrical drift chamber (inner radius depending on target conensions, high backeround): hold backeround): vertex, background): vertex, ound ٠

 π^{-} momentum and P

range counter: π^- energy measurement and PId (dE/dx vs E, R, hit position) w/out magnet (and drift chamber?)

(8-10 layers, 5-10 cm tot, to be studied!)

- \rightarrow energy resolution < 4-5 MeV FWHM
- \rightarrow PId contamination < 1%: e (β ~1), π (~100 MeV/c), p (≤400 MeV/c)

• total material thickness:

- low density target: He completely negligible, only apparatus materials
- high density target: similar to LHe in J-PARC

in general, presumably comparable to the J-PARC situation \rightarrow momentum cut on MWD π - ~ 70 MeV/c

- ${}^{3,4}_{\Lambda}$ H not stopped in He before decay (~ 350 MeV/c, γ ~ 1.004, 0.4% syst.) - low density target: R>> $\beta c\tau \rightarrow$ mainly decay in flight, outside the target
 - high density target (~ LHe): $R \sim \beta c\tau$, $\geq 50\%$ decay in flight, inside the target
- prompt reaction: (e, e' K+(e+) π -) inelastic scattering
- background:
 - $\Lambda_{q.f.}$
 - "absent" for ${}^{4}{}_{\Lambda}$ H (B $_{\Lambda}$ ~ 2 MeV, MM resolution~ 600 keV)
- to be carefully evaluated !!
- ${}^{3}_{\Lambda}$ H (B_{Λ} ~ 0.13 MeV) \rightarrow 3b MWD, lower π - momentum (70-100 MeV/c): range counters (\rightarrow magnetic analysis ...)

accidental (e' K+) reduced by large opening angles of HRS and HKS

/ YES

- present beam for ${}^{4}_{\Lambda}H$
- present beam/HIHR for ${}^3_{\Lambda}$ H vs d σ /d Ω
- careful study of T1 insertion
- prompt reaction (K⁰_s lifetime)
- parasitic measurement possible

JLab

- ✓ YES ${}^{4}_{\Lambda}$ H, ${}^{3}_{\Lambda}$ H
- dense target (rate, decay point)
- T0 not directly measured
- ✓ HOWEVER
- no tracking for MWD products
- range counter critical (Pid, E)
- prompt reaction
- background study
- ✓ NO
- parasitic measurement

Kamada PRC 57 (1998) 1595 && A BR

```
^{3}{}_{\Lambda}H \rightarrow d+p+\pi- and d+n+\pi^{0}: \Gamma/\Gamma_{\Lambda}= 0.619
\Gamma_{tot}/\Gamma_{\Lambda}= 1.03
```

 $\Lambda \rightarrow p + \pi - BR: 0.639$ $\rightarrow n + \pi^0 BR: 0.358$

 ${}^{3}_{\Lambda}H \rightarrow d+p+\pi-BR: 0.619 * 0.639 \sim 0.4$

detailed situation analysis

³_AH lifetime measurements

year	ref.	method	lab./react	τ (ps)	events
1963	Block, St. Cergue p.63	He BC	K⁻, LBL Bevatron	105 ⁺²⁰ -18	29f + 7r
1964	Prem, PR 136 B1803	emuls.	K ⁻ , BNL AGS	90 ⁺²²⁰ ₋₄₀	3f+1r
1965	Kang, PR 139 B401	emuls.	K ⁻ , BNL AGS	340 ⁺⁸²⁰ -140	5f+18r
1968	Keyes, PRL 20 819	He BC	K ⁻ , ANL ZGS	232 ⁺⁴⁵ -34	3f+1r
1968	Phillips PRL 20 1383	emuls.	K ⁻ , BNL AGS	274 ⁺¹¹⁰ ₋₇₂	21f+32r
1969	Phillips PR 180 1307	emuls.	K ⁻ , BNL AGS	285 ⁺¹¹⁴ -75	3f+1r
1970	Bohm, NPB 16 46	emuls.	K ⁻ , CERN PS	128 ⁺³⁵ -26	120f+34r
1970	Keyes, PRD 1 66	He BC	K ⁻ , ANL ZGS	264 ⁺⁸⁴ -52	27f
1973	Keyes, NPB 67 269	He BC	K ⁻ , ANL ZGS	246 ⁺⁶² ₋₄₁	40f
1992 (A)	Avramenko, NPA 547 95c	ions	He, Li on C, Dubna	240 ⁺¹⁷⁰ -100	few events
2010	STAR, Science 328, 58	н	Au, BNL RHIC	182 ⁺⁸⁹ -45 ± 27	
2013 (B)	STAR, NPA 904, 551c	н	Au, BNL RHIC	123 ⁺²⁶ -22 ± 10	> stat. ?
2013	HypHI, NPA 913, 170	lons	Li on C, GSI SIS	183 ⁺⁴² -32 ± 37	
2014	Rappold et al., PLB 728, 543	analysis	no (A) and (B)	216 ⁺¹⁹ -16	
2015	ALICE, arXiv:1506.08453	н	Pb CERN LHC	181 ⁺⁵⁴ -38 ± 33	24

${}^{4}_{\Lambda}H$ lifetime measurements

year	ref.	method	lab./react	τ (ps)	events
1962	Crayton, HEP CERN, p. 460	emuls.	K ⁻ , LBL Bevatron	< 120 ⁺⁷⁰ ₋₃₀	52f
1964	Prem, PR 136 B1803	emuls.	K ⁻ , BNL AGS	180 ⁺²⁵⁰ -70	3f + 4r
1965	Kang, PR 139 B401	emuls.	K ⁻ , BNL AGS	240 +600 -100	5f + 40r
1969	Phillips PR 180 1307	emuls.	K ⁻ , BNL AGS	268 ⁺¹⁶⁶ -107	10f + 5r
1991 (C)	Szymanski PRC 43 849	counter	K ⁻ on ⁶ Li, BNL AGS	160 ± 20	
1992 ('89)	Avramenko, NPA 547 95c	ions	He, Li on C, Dubna	220 ⁺⁵⁰ -40	22
1992	Outa, NPA 547 109c	counter	K ⁻ _{stop} on ⁴ He, KEK PS		
1995	Outa, NPA 585 109c	counter	K_{stop}^{-} on ⁴ He, KEK PS	194 ⁺²⁴ ₋₂₆	
1998	Outa, NPA 639 251c	counter	K_{stop}^{-} on ⁴ He, KEK PS		
2013	HypHI, NPA 913, 170	ions	Li on C, GSI SIS	140 ⁺⁴⁸ -33 ±35	
2014	Rappold et al., PLB 728, 543	analysis	no (C)	192 ⁺²⁰ -18	

w.a. = 173 ± 14 ps with (C) (weighted average) w.a. = 183 ± 18 ps w/out (C)

⁴He target

