Status of K^-pp search experiments

Tomofumi Nagae¹

¹Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan

Kaonic nuclei are a new type of hadron many-body system with strangeness degrees of freedom, if existed. It is a bound system of meson and baryons instead of baryon many-body systems such as hypernuclei. Among them, so-called " K^-pp " system which is composed of a K^- and two protons is in strong focus as the simplest case. There is a possibility that the system has a large binding energy of > 60 MeV which could reach a high nuclear density close to twice the normal nuclear matter density. Thus, the experimental confirmation of the existence of kaonic nuclei or " K^-pp " is an urgent task in this field.

A lot of experimental searches are recently carried out or on-going in various facilities in the world. In SPring-8/LEPS, a search for the " K^-pp " was carried out in the $\gamma + d \rightarrow K^+\pi^- + X$ reaction at $E_{\gamma} = 1.5-2.4 \ GeV$. Because of a large background from $K^+\Lambda(1520)$ and $K^+\pi^-\pi\Lambda\Sigma$ processes, they were only able to put the upper limits of the production cross section of the order of 10-20% of typical hyperon production cross sections, when the decay width is assumed to be $\Gamma=100 \text{ MeV}$.

HADES collaboration has reported their partial wave analysis result on the reaction of $p(3.5 \text{ GeV}) + p \rightarrow pK^+\Lambda$ to search for the " K^-pp ". They also put the upper limit for the " K^-pp " production cross section of about 4 μ b, while the $\Lambda(1405)$ production cross section at this energy is about 10μ b.

At J-PARC, there are two experiments, E15 and E27, on the " K^-pp " search. The E15 collaboration just reported a semi-inclusive spectrum of the ³He(K^- , n) reaction at 1 GeV/c with a preliminary data. They estimated the upper limit of the " K^-pp " production cross section to be 100–270 µb/sr in the case of Γ =100 MeV, which is about 5% of the quasi-elastic $\bar{K}N$ cross section. In E27 experiment, the " K^-pp " search was carried out in the $d(\pi^+, K^+)$ reaction at 1.69 GeV/c. In order to enhance the signal to background ratio, high-momentum proton (\geq 250 MeV/c) coincidence in the large scattering angles was requested. Such proton coincidence probability showed a large bump structure centered at around 2.27 GeV/ c^2 for the " K^-pp " mass, in addition to the rather sharp structure of $\Sigma N \rightarrow \Lambda N$ cusp and conversion process near 2.13 GeV/ c^2 . With two-proton coincidence condition, the decay modes of the " K^-pp " into Λp , $\Sigma^0 p$, and $\pi Y p$ were separated in the missing energy. From the mass distribution obtained for the $\Sigma^0 p$ decay mode, the mass and width of the " K^-pp " were obtained to be $2275^{+17}_{-18}(stat)^{+21}_{-30}(syst)$ MeV/ c^2 and $162^{+87}_{-45}(stat)^{+66}_{-78}(syst)$ MeV, respectively. It corresponds to the binding energy of $95^{+18}_{-17}(stat)^{+21}_{-21}(syst)$ MeV.

In this talk, the above experimental data and their implications will be discussed.