The 12th International Conference on Hypernuclear and Strange Particle Physics

HYP2015

September 7 – 12, 2015 Tohoku University, Sendai, Japan

luseum of Fine Arts Boston

HYP2015, Sep. 10, 2015

Status of *Kpp* search experiments

Tomofumi NAGAE Kyoto University

Contents

- * Introduction to *"K⁻pp"*
- Recent measurements
 - * LEPS/SPring-8
 - * HADES
 - * J-PARC E15/ fwd "n"
 - * J-PARC E27
- Discussion
- Summary

- * KN : attraction in Isospin=0
 - Kaonic hydrogen X-ray ; SIDDHARTA
 M. Bazzi et al., NPA 881 (2012) 88-97.
 - Low-energy scattering measurements + Branching ratios at threshold
 - * $\Lambda(1405)$ below the Kp threshold
 - * $J^{\pi}=1/2^{\bar{}}$; Moriya et al., Phys. Rev. Lett. 112 (2014) 082004.
 - Antikaon-Nucleon Molecule from Lattice QCD
 ; J.M.M. Hall et al., Phys. Rev. Lett. 114 (2015) 132002.
- * Possible existence of "Kpp" : Y=1, I=1/2, J^{π}=0⁻

Past Experiments on Kpp

First evidence of K⁻pp with ⁶Li+⁷Li+¹²C
 M. Agnello et al., PRL94, (2005) 212303
 Breve [MeV]

B=115+6/-5+3/-4 MeV Γ= 67+14/-11+2/-3 MeV

- ★ DISTO data: $p+p \rightarrow K^- pp (p\Lambda) + K^+$ at 2.85 GeV ★ M=2267±3±5 MeV/ c^2
 - * $\Gamma = 118 \pm 8 \pm 10 \text{ MeV}$

T. Yamazaki et al., PRL 104 (2010) 132502. P. Kienle et al., Eur. Phys. J. A 48 (2012) 183.

Theoretical calculations on Kpp

- Methods : Variational vs. Faddeev
 → Almost same results by using the same interaction model
- ★ KN Interaction Models :
 Chiral SU(3)-based (Energy dependent) → Shallow~20 MeV
 Phenomenological (Energy independent) → Deep~40-70 MeV

	Dote,Hyodo, Weise	Akaishi, Yamazaki	Barnea, Gal, Liverts	Ikeda, Sato	Ikeda, Kamano,Sato	Schevchenko ,Gal, Mares	Revai, Schevchenko	Maeda, Akaishi, Yamazaki
B (MeV)	17-23	48	16	60-95	9-16	50-70	32	51.5
Γ(MeV)	40-70	61	41	45-80	34-46	90-110	49	61
Method	Variational	Variational	Variational	Faddeev- AGS	Faddeev- AGS	Faddeev- AGS	Faddeev- AGS	Faddeev- Yakubovsky
Interaction	Chiral	Phenom.	Chiral	Chiral	Chiral	Phenom.	Chiral	Phenom.

FSI effects ? (V.K. Magas et al.), Λ^*N bound state (T. Uchino et al.)

Comparison between Theory and Exps.

- Binding energy
 - * Shallow case: B~20 MeV
 - * Deep case: B~40-70 MeV
 - * Observations: B>100 MeV
- * Width
 - * agreement: Γ~30-100 MeV

Recent measurements

* LEPS/SPring-8

A.O. Tokiyasu et al., Phys. Lett. B 728 (2014) 616-621.

- * $d(\gamma, K^+\pi^-)$ reaction ($E_{\gamma}=1.5-2.4$ GeV)
- Inclusive missing-mass
 σ_m~10 MeV
 - * Background K⁺ Λ (1520), K⁺ π ⁻ π Y
- Upper limits:2.22-2.36 GeV/c²
 < 1.1-2.9 μb for Γ=100 MeV,
 9.9-26% of KπY productions

* HADES

G. Agakishiev et al., Phys. Lett. B 742 (2015) 242-248.

- * $p+p \rightarrow K^+ p\Lambda$ @3.5 GeV
- Bonn-Gatchina Partial Wave Analysis well reproduces the data
- *K*-*pp* production upper limit ~4 µb for Γ=70 MeV (2.22-2.37 GeV/c²)
 ↓

 $\Lambda(1405)$ production ~10µb

* **J-PARC E15**

200

150

100

50

02

2.05

Upper limit (µb/sr

Γ = 20 MeV

2.1

- T. Hashimoto et al., PTEP (2015) 061D01 * ³He(K⁻,n) reaction @ 1 GeV/c
- Semi-inclusive missing-mass σ_m:5-15 MeV
- * *K*-*pp* production upper limit 100-270 μ b/sr for Γ =100 MeV (~5% of QF K-n elastic) Binding Energy [GeV] 0.2 0.15 01 0.05 0.25 0.35 300 $2.06-2.29 \text{ GeV}/c^2$ 100 MeV at $\theta_n^{\text{lab}} = 0^\circ$) 250 `= 60 MeV

2.2

³He(K, n)X missing mass (GeV/c²)

2.25

2.3

2.15

2.35

Lessons

- It looks hard to observe the K-pp signal in inclusive measurements. (LEPS, J-PARC E15 fwd "n")
 - Small and Broad signature ; ~1
 two-step reaction (two nucleons be involved)
 - Large and Widely distributed QF background ; >10~100 single-step reaction

J-PARC E27

* $d(\pi^+, K^+)$ reaction @1.69 GeV/c Y. Ichikawa et al., PTEP (2014) 101D03. Y. Ichikawa et al., PTEP (2015) 021D01.

Yamazaki & Akaishi, Phys. Rev. C 76 (2007) 045201.

Experimental Setup

C

- * K1.8 beam line spectrometer
 - * 1.69 GeV/c π^+
 - * $\Delta p / p \sim 2 \times 10^{-3}$
- SKS spectrometer
 - * $0.8-1.3 \text{ GeV}/c \text{ K}^+$
 - * $\Delta p / p \sim 2 \times 10^{-3}$
 - * $\Delta\Omega$ ~100 msr
- Target : liquid deuterium(1.99 g/cm²)

Expected Inclusive Spectrum

$p(\pi^+, K^+)\Sigma^+/\Sigma^* @1.69 \text{ GeV}/c$

Σ⁺ and Σ⁺(1385):
 mass & width are consistent
 with PDG

*
$$\Delta m_{FWHM} = 2.8 \pm 0.1 \text{ MeV}/c^2$$

Measured $d(\pi^+, K^+)X$ spectrum

Range counter for Proton tagging

- * Range Counter Arrays (RCA)
 - 5 layers(1+2+2+5+2 cm) of
 Plastic scinti.
 - * 39-122 deg. (L+R)
 - * 50 cm TOF $\rightarrow \beta_p$

Proton Tagging

Simulation

* Background: QFY/Y* productions \rightarrow Forward protons

Signal: *K*-*pp* decays \rightarrow protons in RCA

 \mathbf{x}

Coincidence Study

- Proton mom. >250 MeV/c
 - & QFΛ, QFΣ, QFY*s are suppressed as expected !!

* What's left?

One-proton coincidence

- Coincidence Probability(MM)
 = One-proton coincidence(MM)/Inclusive(MM)
 - Enhancement near the ΣN threshold (2.13 GeV/c²)
 - Broad bump at ~2.28 GeV/c²

Two-proton coin. & Decay mode

Kinematically almost-complete measurement !

Mass-acceptance for each decay mode

Kpp-like Structure

* Mass: $2275^{+17}_{-18}(\text{stat.})^{+21}_{-30}(\text{syst.}) \text{ MeV}/c^2$

Relativistic Breit-Wigner

- * Width: $162_{-45}^{+87}(\text{stat.})_{-78}^{+66}(\text{syst.})$ MeV
- * Binding Energy 95 + 18 17 (stat.) +30 21 (syst.) MeV

$\Lambda p / \Sigma^0 p$ Branching Fraction

Remarks

- * $\Lambda(1405)$ production seems to be necessary,
 - * (OK for DISTO, HADES, J-PARC E27; △ for FINUDA,
 ? for E15)
 - * but, not enough !
- * Need to understand the $\Lambda^*(E)p \rightarrow K^-pp$ dynamics

→sensitivity of the measurements
 7% of Λ(1405) in E27 ⇔ < 40% in HADES

Discussion on "Kpp"

- Binding Energy is large (~100 MeV), and the width is broad.
 - Not inconsistent with FINUDA, DISTO
 - Theoretical calcs. are difficult to reproduce the large binding.

Other possibilities

- * Dibaryon as $\pi \Lambda N \pi \Sigma N$ bound states H. Garcilazo, A. Gal, PLB 897 (2013) 167-178. Y=1, I=3/2, J^{π}=2⁺; Λp (I=1/2) decay is prohibited.
- * $\Lambda(1405)$ N bound state T. Uchino et al., NPA868 (2011) 53. I=1/2, J^{π}=0⁻; not so large binding
- A lower πΣN pole of "K⁻pp"

 a broad resonance near the πΣN threshold
 A. Dote, T. Inoue, T. Myo, PTEP (2015) 043D02.

 Enhanced KN interaction due to

 Partial restoration of Chiral symmetry;

S. Maeda, Y. Akaishi, T. Yamazaki, Proc. Jpn. Acad., B 89 (2013) 418-437.

On-going activities

- * AMADEUS : ${}^{12}C(+{}^{27}Al)(K_{stop},\Sigma^0p)X$
- HADES : Global Partial Wave Analysis with HADES
 +DISTO+FOPI+COSY datasets ...
- J-PARC E15 : ³He(K⁻,npΛ)
 coming data taking in Nov. for 10-times better statistics

Summary

- * "*K*⁻*pp*"-like structure is observed in the d(π^+ ,K⁺*pp*)X reaction at 1.69 GeV/*c* in the Σ^0 p invariant mass, for the first time.
 - * Binding Energy $95^{+18}_{-17}(\text{stat.})^{+30}_{-21}(\text{syst.})$ MeV
 - * Width $162_{-45}^{+87}(\text{stat.})_{-78}^{+66}(\text{syst.})$ MeV
 - * Branching Fraction $\frac{\Gamma_{\Lambda p}}{\Gamma_{\Sigma^0 p}} = 0.92^{+0.16}_{-0.14}(stat)^{+0.60}_{-0.42}(syst)$
 - * First evidence of Y=1, B=2, S=-1 bound system
 - * No B=2, S=-1 hypernuclei; Λ : B=3, ${}^{3}_{\Lambda}$ H, Σ : B=4, ${}^{4}_{\Sigma}$ He
 - * How about B=2, S=-2 ?? , $\Lambda\Lambda$ -H dibaryon, ΞN