

Search for the H-Dibaryon in (K^-, K^+) Reaction at J-PARC

Jung Keun Ahn (Korea University)

Hyperon-Nucleon Scattering in ${ m S}=-2$ Systems

- Hyperon-nucleon interaction, particularly in S = -2 system, may shed light on our understanding of the nature of SU(3) symmetry breaking in a baryon-baryon interaction.
- In particular, a measurement of the $\Xi^- p \rightarrow \Lambda\Lambda$ conversion cross section is crucial in assessing the stability of Ξ^- quasi-particle state in nuclei.
- Low energy $\Xi^- p$ elastic and $\Xi^- p \rightarrow \Lambda\Lambda$ cross sections in the range of 0.2 GeV/c to 0.8 GeV/c, which are less than 24 mb at 90% CL and $4.3^{+6.3}_{-2.7}$ mb, respectively.¹

¹J.K. Ahn *et al.*, Phys. Lett. B633 (2006) 214

$\Xi^- p ightarrow \Lambda\Lambda$ Cross Sections 2

²J.K. Ahn *et al.*, Phys. Lett. B633 (2006) 214

Dibaryon Multiplets

For baryon-octet + baryon-octet

Brief History about the H-Dibaryon Search

- Deeply-bound di-hyperon predicted by R. Jaffe (1977).
- No evidence for the deeply-bound H from KEK, BNL, and CERN experimental efforts by more than 80 MeV (1980-2000s).
- Mass constraint from observation of $^{6}_{\Lambda\Lambda}$ He (E373).
- Enhanced AA production near threshold was reported from E224 and E522 at KEK-PS.
- No evidence for $H \rightarrow \Lambda p\pi^-$ and $H \rightarrow \Lambda\Lambda$ in high-energy e^+e^- , pp and AA collisions from Belle, STAR, and ALICE.

Mass Constraint from Double- \wedge Hypernuclei

- ΛΛ pair decays strongly to the H in a nucleus if H is lighter than ΛΛ in a nucleus.
- AA bound in the lowest s-orbit of a hypernucleus may be kept apart by a repulsive short-range potential barrier long enough to allow weak decay to compete with H formation ?

$\Lambda\Lambda$ Production in (K^-,K^+) Reaction near Threshold

KEK-E224 measurement for ${}^{12}C(K^-, K^+)\Lambda\Lambda X$ (7.6 µb/sr and 3 µb/sr for the H)

H-Dibaryon as a $\Lambda\Lambda$ Resonance?

Indications to the enhanced AA production from KEK-PS E224 and E522 beyond prediction from INC calculations.³ ³Y. Nara *et al.*, Nucl. Phys. A614 (1997) 433.

Spin Analysis

Spin composition measurement from E224: $\frac{dN}{d\cos\theta^*}\Big|_{S=0} = 1 - \alpha_{\Lambda}^2 \cdot \cos\theta^*$

$$\left. rac{dN}{d\cos heta^*}
ight|_{{f S}=1} = 1 + rac{1}{3} lpha_\Lambda^2 \cdot \cos heta^*,$$

where θ^* is the angle between the two decay protons in the $\Lambda\Lambda$ rest frame.

H-Dibaryon from Lattice QCD^4

Recent LQCD calculations seem to point to a weekly bound H or resonant state although we have got to wait for definite results with physical quark masses.

⁴HAL Collab., PRL 106 (2011)/ NPLQCD Collab. PRL 106 (2011)/ Shanahan, Thomas, Young, PRL 107 (2011)

H-Dibaryon Search at J-PARC : E42

The J-PARC-E42 experiment searches for the H-dibaryon in $\Sigma^- p$, $\Lambda p \pi^-$, $\Lambda \Lambda$, and $\Xi^- p$ channels by tagging the S = -2 system production via (K^-, K^+) reactions with a diamond (¹²C) target.

PROPOSAL FOR 50 GEV PROTON SYNCHROTRON

Search for H-Dibaryon with a Large Acceptance Hyperon Spectrometer

J.K. Ahn (spokesperson), K. Imai (co-spokesperson)

■ Hyperon Spectrometer : 1 MeV ∧∧ mass resolution!

Hyperon Spectrometer

Conduction-cooled Superconducting Magnet

- Large aperture with an inner diameter of 800 mm.
- The magnet is now under construction and will be delivered in March, 2016.

Time Projection Chamber : HypTPC

Time Projection Chamber : HypTPC

Uniform Electric and Magnetic Fields

Yield Estimate

Parameters	Diamond target	
K^- beam	$10^6 K^-$ per spill (6 s)	
Target length	15 mm	
Number of nuclei	$2.65 imes 10^{23} / \mathrm{cm}^2$	
$d\sigma/d\Omega^C_L(\Lambda\Lambda)$	7.6 μ b/sr f	rom E224 data
$\Delta\Omega(K^+)$	0.11 sr (PLB444 (1998))
Br $(\Lambda \to p \pi^-)^2$	0.41	
KURAMA for K^+	0.5	
HypTPC for $\Lambda\Lambda$	0.4-0.6 (0.4 for H(2250))
Yield	0.023 event / spill	

 11000 ΛΛ events for 100 shifts and 1440 H(2250) events for 1.0 µb/sr with a 15-mm thick diamond target.

$\Lambda\Lambda$ Spectrum from E522

Expected $\Lambda\Lambda$ Spectrum from E42

Simulated $\Lambda p\pi^-$ Spectrum from E42

Almost free from background events (assuming $\sigma_m = 1$ MeV).

- E45 : Missing nucleon resonances in πN and $\pi \pi N$ channels.
- $\Xi^- p \rightarrow \Xi^- p$ and $\Xi^- p \rightarrow \Lambda \Lambda$ scattering processes with a liquid hydrogen target.
- Two orders of magnitude higher statistics than ever measured in dedicated physics runs for 1 month.

Summary

Please join J-PARC E42 and we can enjoy multi-strangeness world with the *H*-dibaryon search.

Thank you for your attention!

