

Gamma-ray spectroscopy of Hypernuclei -- Resent results and prospects at J-PARC--

H. Tamura Tohoku University for the E13 Collaboration

- **1. Introduction**
- 2. ${}^{4}_{\Lambda}$ He results and CSB
- 3. ${}^{19}_{\Lambda}$ F results
- 4. Future prospects
- 5. Summary

J-PARC E13 collaboration

T. O. Yamamoto,¹ M. Agnello,^{2,3} Y. Akazawa,¹ N. Amano,⁴ K. Aoki,⁵ E. Botta,^{3,6} N. Chiga,¹ H. Ekawa,⁷ P. Evtoukhovitch,⁸ A. Feliciello,³ M. Fujita,¹ T. Gogami,⁷ S. Hasegawa,⁹ S. H. Hayakawa,¹⁰ T. Hayakawa,¹⁰ R. Honda,¹⁰ K. Hosomi,⁹ S. H. Hwang,⁹ N. Ichige,¹ Y. Ichikawa,⁹ M. Ikeda,¹ K. Imai,⁹ S. Ishimoto,⁵ S. Kanatsuki,⁷ M. H. Kim,¹¹ S. H. Kim,¹¹ S. Kinbara,¹² T. Koike,¹ J.Y. Lee,¹³ S. Marcello,^{3,6} K. Miwa,¹ T. Moon,¹³ T. Nagae,⁷ S. Nagao,¹ Y. Nakada,¹⁰ M. Nakagawa,¹⁰ Y. Ogura,¹ A. Sakaguchi,¹⁰ H. Sako,⁹ Y. Sasaki,¹ S. Sato,⁹ T. Shiozaki,¹ K. Shirotori,¹⁴ H. Sugimura,⁹ S. Suto,¹ S. Suzuki,⁵ T. Takahashi,⁵ H. Tamura,¹ K. Tanabe,¹ K. Tanida,⁹ Z. Tsamalaidze,⁸ M. Ukai,¹ Y. Yamamoto,¹ and S. B. Yang¹³ (J-PARC E13-1st Collaboration) ¹Department of Physics, Tohoku University, Sendai 980-8578, Japan ²Dipartimento di Scienza Applicate e Tecnologica. Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy ³INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy ⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁵Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ⁶Dipartimento di Fisica, Universit di Torino, Via P. Giuria 1, 10125 Torino, Italy ⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁸ Joint Institute for Nuclear Research, Dubna ,Moscow Region 141980, Russia ⁹Advanced Science Research Center (ASRC), Japan Atomic Agency (JAEA), Tokai, Ibaraki 319-1195, Japan ¹⁰Department of Physics, Osaka University, Toyonaka 560-0043, Japan ¹¹Department of Physics, Korea University, Seoul 136-713, Korea ¹²Faculty of Education, Gifu University, Gifu 501-1193, Japan ¹³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea ¹⁴Research Center of Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

1. Introduction

Reproduction of level energies

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

Millener's parameter set

 $\Delta = 0.33$ (0.43 for A=7), $S_A = -0.015$, $S_N = -0.35$, T = 0.024 [MeV]

Calculated from G-matrix using $\Lambda N - \Sigma N$ force in NSC97f									
doublet spacing			contribution of each term			(keV)	keV		
	J_u^{π}	J_l^{π}	ΆΣ	Δ	S_{Λ}	S_N	T	ΔE^{th}	ΔE^{exp}
7 Li	$3/2^{+}$	$1/2^{+}$	72	628	-1	$^{-4}$	-9	693	692
7Li	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
⁸ Li	2^{-}	1-	151	396	-14	-16	-24	450	(442)
⁹ _A Li	$5/2^{+}$	$3/2^{+}$	116	530	-17	-18	-1	589	
⁹ Li	$3/2^{+}_{2}$	$1/2^{+}$	-80	231	-13	-13	-93	-9	
${}^9_{\Lambda}\mathrm{Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{10}_{\Lambda}B$	2^{-}	1	-15	188	-21	-3	-26	120	< 100
$^{11}_{\Lambda}B$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}B$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}C$	2^{-}	1-	61	175	-12	-13	-42	153	161
$^{15}_{\Lambda}N$	$1/2^+_1$	$3/2_1^+$	44	244	34	$^{-8}$	-214	99	
$^{15}_{\Lambda}$ N	$3/2^{+}_{2}$	$1/2^+_2$	65	451	$^{-2}$	-16	-10	507	481
$^{16}_{\Lambda}O$	1^{-}	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}O$	2^{-}	1^{-}_{2}	92	207	-21	1	-41	248	224

Reproduction of level energies

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

Millener's parameter set

 $\Delta = 0.33$ (0.43 for A=7), $S_A = -0.015$, $S_N = -0.35$, T = 0.024 [MeV]

double

7 Li

7 Li ∧ Li ∧ Li

⁹∕_∧Li

%Li

⁹_ABe

 ${}^{10}_{\Lambda}B$

пßВ

 $^{11}_{\Lambda}B$

 $^{12}_{\Lambda}C$

 $^{15}_{\Lambda}N$

 $^{15}_{\Lambda}N$

 $^{16}_{\Lambda}O$

 $^{16}_{\Lambda}O$

 Most of the p-shell level data were taken. They are reproduced very well (except for a few levels in A=10-12) \Rightarrow Let us go to s-shell and sd-shell • ΣΛ coupling from NSC97f looks good, but more data and further study needed. What's next at J-PARC? \Rightarrow Go to s-shell (⁴ , He) \Rightarrow Go to sd-shell (¹⁹ , F) J-PARC E13 \Rightarrow Measure B(M1) for g_A in nucleus 2^{-} 1_{2}^{-} 92207-211 -41248224

Hyperball-J

L2

C3

Ge cooled down to ~70K (c.f. 92K w/LN2) to reduce radiation damage

Fast background suppressor made of PWO

∆E= 3.1(1) keV at 1.33 MeV Eff. = 5.4% @1 MeV with 28 Ge(re=60%)

Up side (Target view)

Pulse-tube refrigerator

97

2. ${}^{4}_{\Lambda}$ He run

Parallel 1b (Mon) T.O. Yamamoto

Charge Symmetry Breaking puzzle in A=4

<u>Missing mass of ⁴He(K⁻, π ⁻)⁴<u>A</u>He</u>

Mass-gated γ spectrum

Existence of CSB confirmed <u>only by γ-ray data</u>

Large <u>spin dependence</u> in CSB found by combining with emulsion data

(MeV)

<u>ΛN–ΣN coupling</u>

Our result strongly suggests that $\Lambda N-\Sigma N$ coupling is responsible for CSB, because $\Lambda N-\Sigma N$ coupling gives by one order smaller energy shift to 1+ state than to 0+ state.

 $^{4}_{\Lambda}$ He

-0.06

-0.97

-0.07

1+

-2.51

P_{cobΣ}=2.0 %

SC89(S)

0.0 1+ Slide by Akaishi -0.68 -0.74 1+ 1+ 1+ -1.03 -1.04 -1.20 -1.21 -1.24 -1.04 -1.43 -1.52 Theoretical studies -2.10 -2.18 -2.27 -2.39 0+ will elucidate the 0+ 0+ P_{cobx}=1.9 % P_{cobx}=0.7 % origin of CSB and P_{cobΣ}=0.9 % the $\Lambda N - \Sigma N$ Exp D2 **SC97e**(S) **SC97f**(S) interaction.

Y. Akaishi, T. Harada, S. Shinmura & Khin Swe Myint, Phys. Rev. Lett. 84 (2000) 3539

A. Gal, PLB 744 (2015) 352. => Invited talk in 1a session (Mon) reproduced the present data well .

arXiv:1508.00376v1

Observation of Spin-Dependent Charge Symmetry Breaking in ΛN Interaction: Gamma-Ray Spectroscopy of ${}^{4}_{\Lambda}$ He

T. O. Yamamoto,¹ M. Agnello,^{2,3} Y. Akazawa,¹ N. Amano,⁴ K. Aoki,⁵ E. Botta,^{3,6} N. Chiga,¹ H. Ekawa,⁷ P. Evtoukhovitch,⁸ A. Feliciello,³ M. Fujita,¹ T. Gogami,⁷ S. Hasegawa,⁹ S. H. Hayakawa,¹⁰ T. Hayakawa,¹⁰ R. Honda,¹⁰ K. Hosomi,⁹ S. H. Hwang,⁹ N. Ichige,¹ Y. Ichikawa,⁹ M. Ikeda,¹ K. Imai,⁹ S. Ishimoto,⁵ S. Kanatsuki,⁷ M. H. Kim,¹¹ S. H. Kim,¹¹ S. Kinbara,¹² T. Koike,¹ J.Y. Lee,¹³ S. Marcello,^{3,6} K. Miwa,¹ T. Moon,¹³ T. Nagae,⁷ S. Nagao,¹ Y. Nakada,¹⁰ M. Nakagawa,¹⁰ Y. Ogura,¹ A. Sakaguchi,¹⁰ H. Sako,⁹ Y. Sasaki,¹ S. Sato,⁹ T. Shiozaki,¹ K. Shirotori,¹⁴ H. Sugimura,⁹ S. Suto,¹ S. Suzuki,⁵ T. Takahashi,⁵ H. Tamura,¹ K. Tanabe,¹ K. Tanida,⁹ Z. Tsamalaidze,⁸ M. Ukai,¹ Y. Yamamoto,¹ and S. B. Yang¹³ (J-PARC E13-1st Collaboration) ¹Department of Physics, Tohoku University, Sendai 980-8578, Japan ²Dipartimento di Scienza Applicate e Tecnologica. Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy ³INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy ⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁵Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ⁶Dipartimento di Fisica, Universit di Torino, Via P. Giuria 1, 10125 Torino, Italy ⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁸ Joint Institute for Nuclear Research, Dubna ,Moscow Region 141980, Russia ⁹Advanced Science Research Center (ASRC), Japan Atomic Agency (JAEA), Tokai, Ibaraki 319-1195, Japan ¹⁰Department of Physics, Osaka University, Toyonaka 560-0043, Japan ¹¹Department of Physics, Korea University, Seoul 136-713, Korea ¹²Faculty of Education, Gifu University, Gifu 501-1193, Japan ¹³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea ¹⁴Research Center of Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan (Dated: August 4, 2015) Parallel 1a (Mon) Yamamoto

3. ${}^{19}_{\Lambda}$ F run

Parallel 4b (Tue) Yang Poster A1 Y. Sasaki

The first study of sd-shell hypernuclei

Mass-gated γ-ray spectrum

Several other peaks are also seen.

4. Future Prospect

Experimental Plans of γ-spectroscopy

- 1. Spin-flip B(M1) and in-medium g_{Λ} $^{7}_{\Lambda}$ Li (E13-2nd) and heavier
- 2. Light hypernuclei ${}^{4}_{\Lambda}$ H (CSB), ${}^{3}_{\Lambda}$ H*(1+)
- 3. E1(p_{Λ} -> s_{Λ}) for B_{Λ} (-> Λ NN force) and LS splitting

4. Impurity effects (change of deformation/clustering) sd-shell: ${}^{25}_{\Lambda}Mg$, ${}^{28}_{\Lambda}Si$, ${}^{20}_{\Lambda}Ne$

<u>Magnetic moment of a Λ in a nucleus</u>

Preliminary previous data on g_A

Systematic errors can not be estimated

BNL E930 (M. Ukai)

$$g_{\Lambda}$$
 > -1.76 μ_N ¹²C (K⁻, π⁻) ¹²_ΛC*
τ from DSAM -> ¹¹_ΛB* +

$$g_{\Lambda} = -1.04 \pm 0.41 \ \mu_{N}$$
 ¹²C (K⁻, π^{-}) ¹² C^{*}

 Weak decay rate of 2⁻ and 1⁻ are <u>assumed</u> to be the same, $\Gamma_{\text{weak}} = (\text{lifetime } 230.7 \pm 6.3 \text{ ps})^{-1}$

 $\Rightarrow \Gamma_{M1} = Br / (1 - Br) \Gamma_{weak}$

■ J-PARC E13 ¹⁹F (K⁻, π^-) ¹⁹ F^{*} To be analyzed but difficult

$$rightarrow$$
 $\mathbf{g}_{\Lambda}(\text{free}) = -1.226 \,\mu_{N}$

Dedicated measurement at J-PARC (E13-2nd)

Directly produce the best-known hypernucleus, ⁷_ALi.

- Energies of all the bound states and γ-ray background were measured.
- Cross sections are reliably calculated.
- τ = 0.5ps, $t_{stop} \sim 2.2 \text{ ps for 1.1 GeV/c}$ (K⁻, π ⁻) and Li₂O target (DSAM works only when $\tau < t_{stop}$)

SKS and all the detectors will be installed at a new line "K1.1"

can be precisely (~keV accuracy) measured. \Rightarrow Origin of nuclear LS splitting¥

6. Summary

- Hypernuclear gamma-ray spectroscopy has extended to s-shell and sd-shell regions at J-PARC. We took data for ${}^{4}_{\Lambda}$ He and ${}^{19}_{\Lambda}$ F.
- We observed ⁴_ΛHe(1+->0+) transition at 1406±2±2 keV. It clearly confirmed existence of Charge Symmetry Breaking in ΛN interaction.
 Combined with old emulsion values, we found that B_Λ(1+) difference is by one order of magnitude smaller than B_Λ(0+) difference, suggesting that Λ-Σ coupling is responsible for the CSB.
- **We observed a few hypernuclear** γ **-ray peaks from ¹⁹F target.**
- A peak at 315 keV is most likely assigned as ${}^{19}_{\Lambda}$ F(M1: 3/2+->1/2+).
- Next step is a B(M1) measurement for in-medium g_{Λ} , and then E1(p_{Λ} -> s_{Λ}) and impurity effects.

2015 0

Thank you for your attention.