Study of charge symmetry breaking in ΛN interaction via the gamma-ray spectroscopy of ${}^{4}_{\Lambda}He$

<u>**T.** O. Yamamoto¹</u> for the E13 collaboration

¹Department of Physics, Tohoku University, Sendai, 980-7858, Japan

A gamma-ray spectroscopy study of ${}^{4}_{\Lambda}$ He was performed at the J-PARC K1.8 beam line as the first phase of the J-PARC E13 experiment [1]. By measuring the ${}^{4}_{\Lambda}$ He(1⁺ \rightarrow 0⁺) gamma transition, we can examine the existence of charge symmetry breaking(CSB) in Λ N interaction by comparing with the mirror hypernucleus, ${}^{4}_{\Lambda}$ H [2,3,4]. The old experiments suggested large differences in the excitation energies ($E(1^+) - E(0^+)$) as well as the g.s. Λ -binding energies ($B_{\Lambda}(0^+)$) between the mirror hypernuclei, leading to unexpectedly large CSB in Λ N interaction. However, statistical quality for the ${}^{4}_{\Lambda}$ He (1⁺ \rightarrow 0⁺) gamma-ray data in the past experiment [2] is insufficient to confirm the existence of a large CSB, and thus more precise measurement of the energy spacing was long awaited. In order to break through this situation, we performed a gamma-ray spectroscopy experiment of ${}^{4}_{\Lambda}$ He to measure the transition energy of the Λ -spin doublet states (1⁺, 0⁺) using germanium(Ge) detectors with an energy resolution of 3 keV.

 ${}^{4}_{\Lambda}$ He hypernuclei were produced by the (K^{-}, π^{-}) reaction with a 1.5 GeV/*c* kaon beam and a liquid ⁴He target. K^{-} beams and scattered π^{-} mesons were particle-identified and momentumanalyzed by the beam line spectrometer and the modified SKS spectrometer (SksMinus), respectively. On the other hand, gamma rays were detected by a newly developed Ge detector array, Hyperball-J, placed around the target. Through coincidence measurement between these spectrometer systems and Hyperball-J, gamma rays from ${}^{4}_{\Lambda}$ He hypernuclei were measured.

The whole detector system was installed and tested with beam in 2013, and it was confirmed to have sufficient performance. Data taking for the $^{4}_{\Lambda}$ He gamma-ray measurement was performed in April, 2015 after the operation of the J-PARC Hadron Experimental Facility was resumed. We irradiated a 3 g/cm² liquid ⁴He target with 2.3×10^{10} kaons. The data is being analyzed and a precise value of the transition energy will be determined soon. In this talk, a new experimental result will be presented and physics discussion based on the new data will be made.

- [1] H. Tamura, M. Ukai, T.O. Yamamoto, T. Koike, Nucl. Phys. A 881 (2012) 310-321.
- [2] M. Bedjidian *et al.*, Phys. Lett. 83B (1979) 252.
- [3] M. Bedjidian *et al.*, Phys. Lett. 62B (1976) 467.
- [4] A. Kawachi, Ph.D. thesis, Univ. of Tokyo (1997).