

Study of charge symmetry breaking in Λ N interaction via the gamma-ray spectroscopy of ${}^{4}_{\Lambda}$ He

2015/9/7 T. O. Yamamoto

Dept. of Phys., Tohoku Univ., Japan and the E13 collaboration

J-PARC E13 collaboration

T. O. Yamamoto,¹ M. Agnello,^{2,3} Y. Akazawa,¹ N. Amano,⁴ K. Aoki,⁵ E. Botta,^{3,6} N. Chiga,¹ H. Ekawa,⁷ P. Evtoukhovitch,⁸ A. Feliciello,³ M. Fujita,¹ T. Gogami,⁷ S. Hasegawa,⁹ S. H. Hayakawa,¹⁰ T. Hayakawa,¹⁰ R. Honda,¹⁰ K. Hosomi,⁹ S. H. Hwang,⁹ N. Ichige,¹ Y. Ichikawa,⁹ M. Ikeda,¹ K. Imai,⁹ S. Ishimoto,⁵ S. Kanatsuki,⁷ M. H. Kim,¹¹ S. H. Kim,¹¹ S. Kinbara,¹² T. Koike,¹ J .Y. Lee,¹³ S. Marcello,^{3,6} K. Miwa,¹ T. Moon,¹³ T. Nagae,⁷ S. Nagao,¹ Y. Nakada,¹⁰ M. Nakagawa,¹⁰ Y. Ogura,¹ A. Sakaguchi,¹⁰ H. Sako,⁹ Y. Sasaki,¹ S. Sato,⁹ T. Shiozaki,¹ K. Shirotori,¹⁴ H. Sugimura,⁹ S. Suto,¹ S. Suzuki,⁵ T. Takahashi,⁵ H. Tamura,¹ K. Tanabe,¹ K. Tanida,⁹ Z. Tsamalaidze,⁸ M. Ukai,¹ Y. Yamamoto,¹ and S. B. Yang¹³ (J-PARC E13-1st Collaboration) ¹Department of Physics, Tohoku University, Sendai 980-8578, Japan ²Dipartimento di Scienza Applicate e Tecnologica. Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy ³INFN. Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy ⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁵Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ⁶Dipartimento di Fisica, Universit di Torino, Via P. Giuria 1, 10125 Torino, Italy ⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁸ Joint Institute for Nuclear Research, Dubna ,Moscow Region 141980, Russia ⁹Advanced Science Research Center (ASRC), Japan Atomic Agency (JAEA), Tokai, Ibaraki 319-1195, Japan ¹⁰Department of Physics, Osaka University, Toyonaka 560-0043, Japan ¹¹Department of Physics, Korea University, Seoul 136-713, Korea ¹²Faculty of Education, Gifu University, Gifu 501-1193, Japan ¹³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea ¹⁴Research Center of Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

Contents

Introduction

- **Charge symmetry breaking in {}^{4}_{\Lambda}H/ {}^{4}_{\Lambda}He**
- Experiment at J-PARC (E13)
- Result of the 2015 physics run
 - New data on the excitation energy of ${}^{4}_{\Lambda}$ He(1+)
- Summary

Charge symmetry breaking (CSB) in ΛN-interaction (A=4 system)

Unexpectedly large difference in excitation energies (E_{γ}) and Λ -binding energies (B_{Λ}) between the mirror hypernuclei.

 $\Delta B_{\Lambda} (0^{+}) = 0.35 \text{ MeV}, \Delta B_{\Lambda} (1^{+}) = 0.28 \text{ MeV}$ Still an open question

A. R. Bodmer and Q. N. Usmani, Phys. Rev. C31 (1985) 1400. B. F. Gibson and D. R. Lehman, Phys. Rev. C37 (1988) 679.

A. Nogga, H. Kamada, and W. Gloockle, Phys. Rev. Lett. 88, 172501 (2002)

Considering

Coulomb force

with widely used NSC97e

• $\Lambda N-\Sigma N$ coupling

Many theoretical efforts, but inconsistent with data

Need re-examination of existing data

CSB effect in $B_{\Lambda}(0^+)$

Old experiments for E_{\gamma}({}^{4}_{\Lambda}H)

Three experiments were performed

Old experiment for E_{\gamma}(^{4}AHe)

Only one experiment was performed

- **Stopped K- reaction (Li target)**
 - detecting π0→γγ
 (with Pb + scinti. sandwich)
 for tagging hypernuclei
 - Doppler broaden γ peak
- Nal detector
 - Energy resolution : 12% (⁸Li* : 0.98 MeV)
- Limited statistics

Higher sensitivity and statistics can be achieved by

- In-flight ⁴He(K-, π -)⁴_AHe reaction
- **Ge detector** (Energy resolution : 0.2%)
- High intensity K beam
 - + large acceptance spectrometers

M. Bedjidian et al., Phys. Lett. B 83, 252 (1979).

reported value : 1.15 (0.04) MeV

The J-PARC E13 experiment

0

Time line of the E13 experiment

- 2012.8 Installation of Hyperball-J
- **2013.1** Installation of SksMinus detectors
- 2013.3-5 Commissioning beam time whole system was checked (suspend just before physics run)

2015.4 Physics run with a ⁴He target This talk

- γ -ray spectroscopy of ${}^{4}_{\Lambda}$ He

- missing mass spectroscopy of ${}^{4}{}_{\Sigma}\text{He}$

Irradiated K-beam : 23 G

(Total beam time = ~5 days)

2015.6 Physics run with a CF₄ target
- γ-ray spectroscopy of ¹⁹ F

Hyperball-J

M. Nakagawa

S.B. Yang

Y. Sasaki (poster)

Identification of ⁴_AHe production

Gamma-ray measurement

Result

0

Mass gated gamma-ray spectrum

Mass gated gamma-ray spectrum

Mass gated gamma-ray spectrum

Revised level scheme and our finding

Summary

γ -ray spectroscopy of ${}^{4}_{\Lambda}$ He was performed.

Excitation energy of ⁴^AHe(1⁺)

= 1.406 ± 0.002(stat.) ±0.002(syst.) MeV

Existence of CSB was confirmed uniquely by γ-ray spectroscopy (compared with E_γ(⁴_ΛH))

CSB effect is strongly spin-dependent

(combined with emulsion data)

$$\frac{\Delta B_{\Lambda}(0^{+})}{\Delta B_{\Lambda}(1^{+})} = \frac{0.35 \text{ MeV}}{0.03 \text{ MeV}} = 12$$

Our updated data invite renewed interests and further studies on CSB effects in ΛN interaction.