Spectroscopy and structure of excited heavy baryons

T.Yoshida^{A,B}, M.Oka^A, A.Hosaka^B, E.Hiyama ^C, K.Sadato^{B,D} ^ATokyo tech, ^BRCNP, ^CRIKEN, ^DG-search 2015.9.10 (Hyp 2015)

1. Introduction

-Spectroscopy of heavy baryons

-λ-mode and ρ-mode (Main topic)

→Definition of two modes Separation of two modes

2. FORMARIZM

Hamiltonian

Calculation method (Gauss expansion method)

- 3. Results Mass of Charm, Bottom baryons HQ mass dependence of baryon mass and wave function
- 4. Summary

P	$1/2^{+}$	****	∆ (1232)	3/2+	****	Σ^+	$1/2^+$	****	=0	$1/2^+$	****	Λ_c^+	$1/2^{+}$	****
n	$1/2^{+}$	****	$\Delta(1600)$	3/2+	***	Σ^0	$1/2^+$	****	=-	$1/2^+$	****	$\Lambda_{c}(2595)^{+}$	1/2-	***
N(1440)	$1/2^{+}$	****	$\Delta(1620)$	1/2-	****	Σ-	$1/2^{+}$	****	$\Xi(1530)$	3/2+	****	$\Lambda_{c}(2625)^{+}$	3/2-	***
N(1520)	3/2-	****	$\Delta(1700)$	3/2-	****	Σ(1385)	3/2+	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$		*
N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
N(1650)	1/2-	****	$\Delta(1900)$	1/2-	**	$\Sigma(1560)$		**	$\Xi(1820)$	3/2-	***	$\Lambda_{c}(2940)^{+}$		***
N(1675)	5/2	****	$\Delta(1905)$	$5/2^{+}$	****	$\Sigma(1580)$	3/2-	*	$\Xi(1950)$	_	***	$\Sigma_{c}(2455)$	$1/2^{+}$	****
N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^{+}$	****	$\Sigma(1620)$	1/2-	*	$\Xi(2030)$	$\geq \frac{5}{2}$	***	$\Sigma_{c}(2520)$	3/2+	***
N(1685)		*	$\Delta(1920)$	3/2+	***	$\Sigma(1660)$	$1/2^{+}$	***	$\Xi(2120)$		*	$\Sigma_{c}(2800)$		***
N(1700)	3/2-	***	$\Delta(1930)$	5/2	***	$\Sigma(1670)$	3/2-	****	$\Xi(2250)$		**	Ξ_c^+	$1/2^{+}$	***
N(1710)	1/2+	***	△ (1940)	3/2-	**	$\Sigma(1690)$		**	$\Xi(2370)$		**	=0_	$1/2^{+}$	***
N(1720)	3/2+	****	$\Delta(1950)$	7/2+	****	$\Sigma(1730)$	3/2+	*	$\Xi(2500)$		*	='+	$1/2^{+}$	***
N(1860)	5/2+	**	$\Delta(2000)$	$5/2^{+}$	**	$\Sigma(1750)$	1/2-	***				='0	1/2+	***
N(1875)	3/2-	***	$\Delta(2150)$	1/2-	*	$\Sigma(1770)$	$1/2^{+}$	*	Ω^{-}	3/2+	****	$\Xi_{-}^{(2645)}$	3/2+	***
N(1880)	$1/2^{+}$	**	$\Delta(2200)$	7/2	*	$\Sigma(1775)$	5/2	****	$\Omega(2250)^{-}$		***	$\Xi_{-}(27.90)$	1/2-	***
N(1895)	1/2-	**	$\Delta(2300)$	9/2+	**	$\Sigma(1840)$	3/2+	*	$\Omega(2380)^{-}$		**	$\Xi_{-}(28.15)$	3/2-	***
N(1900)	3/2+	***	$\Delta(2350)$	5/2	*	$\Sigma(1880)$	$1/2^{+}$	**	$\Omega(2470)^{-}$		**	$\Xi_{c}(2930)$	-,-	*
N(1990)	7/2+	**	$\Delta(2390)$	7/2+	*	$\Sigma(1900)$	1/2	*				E_(2980)		***
N(2000)	5/2+	**	$\Delta(2400)$	9/2-	**	Σ(1915)	5/2+	****				E_(3055)		**
N(2040)	3/2+	*	$\Delta(2420)$	$11/2^+$	****	Σ(1940)	3/2+	*				E_(3080)		***
N(2060)	5/2-	**	$\Delta(2750)$	13 /2 -	**	$\Sigma(1940)$	3/2-	***				E_(3123)		*
N(2100)	$1/2^{+}$	*	$\Delta(2950)$	15 /2 ⁺	**	$\Sigma(2000)$	1/2	*				Ω^0	$1/2^{+}$	***
N(2120)	3/2-	**				$\Sigma(2030)$	7/2+	****				Ω_(2770) ^Ω	3/2+	***
N(2190)	7/2-	****	л	$1/2^{+}$	****	$\Sigma(2070)$	5/2+	*					-,-	
N(2220)	9/2+	****	$\Lambda(1405)$	$1/2^{-}$	****	$\Sigma(2080)$	3/2+	**			\uparrow	=+		*
N(2250)	9/2-	****	A(1520)	3/2-	****	$\Sigma(2100)$	7 /2	*			$\langle \rangle$	~~~		- 1
N(2300)	$1/2^{+}$	**	A(1600)	$1/2^{+}$	***	$\Sigma(2250)$		***				18,	$1/2^{+}$	***
N(2570)	5/2-	**	A(1670)	$1/2^{-}$	****	$\Sigma(2455)$		**				$\Lambda_{b}(5912)^{0}$	1/2-	***
N(2600)	11/2	***	A(1690)	3/2-	****	$\Sigma(2620)$		**				$\Lambda_{b}(5920)^{0}$	3/2-	**
N(2700)	13/2+	**	$\Lambda(17\ 10)$	$1/2^{+}$	*	$\Sigma(3000)$		*	C			Σ_b	1/2+	
			A(1800)	1/2-	***	$\Sigma(3170)$	/					Σ_{h}^{*}	/	
			A(1810)	1/2+	***			N .	SV /			=1, =-	- C	
			A(1820)	5/2+	****			×.	\checkmark			=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SUC	***
			A(1830)	5/2-	****						J		4	***
			$\Lambda(1890)$	3/2+	****		\mathbf{O}		ſ					
			A(2000)		*							60		I
			A(2020)	7/2+	*						∖ ▶			
			A(2050)	3/2-	*						\sim			I
			A(2100)	7/2-	****									

We do not have the information of the excited heavy baryons

A(2585)

**

ρ -mode and λ -mode -Why we focus on the excited heavy baryons?-(What is interesting?)

Harmonic oscillator type potential

ρ -mode and λ -mode -Why we focus on the excited heavy baryons?-(What is interesting?)

Harmonic oscillator type potential

$$H = \sum_{i} \frac{p_{i}^{2}}{2m_{i}} + \sum_{i < j} \frac{3k}{2} |r_{i} - r_{j}|^{2} = \frac{p_{\rho}^{2}}{2m_{\rho}} + \frac{p_{\lambda}^{2}}{2m_{\lambda}} + \frac{m_{\rho}\omega_{\rho}^{2}}{2}\rho^{2} + \frac{m_{\lambda}\omega_{\lambda}^{2}}{2}\lambda^{2}$$

$$0.5 \qquad \rho \qquad \omega_{\rho} = \sqrt{\frac{3k}{2m_{\rho}}} \quad \omega_{\lambda} = \sqrt{\frac{2k}{m_{\lambda}}}.$$

$$\frac{\omega_{\lambda}}{\omega_{\rho}} = \sqrt{\frac{1}{3}(1 + 2m_{q}/m_{Q})}$$

$$0.4 \qquad \omega_{\lambda} = \sqrt{\frac{1}{3}(1 + 2m_{q}/m_{Q})}$$

Mixing of λ and ρ -mode

Spin-Spin force induce the mixing of λ and ρ -mode

$$|\Psi_{B^{-}}\rangle = C_{\rho}|\rho\rangle + C_{\lambda}|\lambda\rangle \xrightarrow{|C_{\lambda}|^{2}} |C_{\rho}|^{2}$$
We can get the information of the structure of P-wave heavy baryons from the coefficients C_{\lambda}, C_{\rho}
Two modes mix strongly?

Decay pattern

Why we focus on the excited heavy baryons?

- 1. Prediction for the heavy baryon spectra of excited state
- → It has not been observed experimentally
 - It is difficult to treat in the Lattice QCD

2. The separation of the $\lambda\text{-}$ and $\rho\text{-}$ modes

- \rightarrow It is seen only in the heavy quark sector.
 - The feature is reflected on decay.

• Introduce color Coulomb force which depend on quark mass (Form recent Lattice QCD calculation) Taichi Kawanai and Shoichi Sasaki. • Introduce ALS force to guarantee HQ symmetry (Because now we focus on heavy quark sector) We will see two state degenerate in the heavy quark limit (HQS doublet) • Parameters is determined by experimental data of strange baryons (we omit $\Lambda(1405)$ and Roper like resonance to fit the data)

Eigen value problem

Hc = ENc $\begin{pmatrix} H_{11} & H_{12} & \cdots & H_{1N} \\ H_{21} & H_{22} & \cdots & H_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ H_{nN} & H_{nN} & \cdots & H_{NN} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} = E \begin{pmatrix} N_{11} & N_{12} & \cdots & N_{1N} \\ N_{21} & N_{22} & \cdots & N_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ N_{nN} & N_{nN} & \cdots & N_{NN} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} \begin{pmatrix} N_{ij} = \langle \phi_{JM}^{(i)} | \phi_{JM}^{(j)} \rangle \\ H_{ij} = \langle \phi_{JM}^{(i)} | H | \phi_{JM}^{(j)} \rangle \end{pmatrix}$ function as sum of charged the second second

- We describe baryon wave function as sum of channels

E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51 (2003) 223

Result

Spectra of Charmed baryons

Spectra of Charmed baryons

Spectra of bottom baryons

Negative parity states — p-wave excitations - 1/2⁻, 3/2⁻, 5/2⁻

Quark mass dependence of Probability

Quark mass dependence of Probability

Summary

 ✓ We calculate charmed baryon spectra and our result reproduce experimental data. (except for ∧(1405))

 ✓ In heavy quark sector, states separate into λ-mode and ρ-mode. And one mode become quite dominant.
 →This feature will reflect on decay of heavy baryons
 (We need more information of decay of heavy baryons)

Thank you for your attention!!

The 12th International Conference on Hypernuclear and Strange Particle Physics

HYP2015

September 7 – 12, 2015 Tohoku University, Sendai, Japan

PERSONAL PROPERTY AND DESCRIPTION.

Level structure of P-wave singly heavy baryon

Coulomb force depend on quark mass Taichi Kawanai and Shoichi Sasaki. Phys.Rev.Lett.,107:091601, 2011.

Heavy quark spin conserve in heavy quark limit

$$[H, \mathbf{s}_Q] = [H, \mathbf{J} - \mathbf{s}_Q] = [H, \mathbf{j}] = 0$$

j+1/2j-1/2 s_Q s_Q s_Q

We will see two state degenerate in the heavy quark limit (HQS doublet)

$$V_{q\bar{q}}(r) = -\frac{A}{r} + \sigma r + V_0$$

$$\alpha_{\rm coul} = \frac{K}{\mu_{ij}}$$

κ	am_q	Α	$a^2\sigma$	$A/a^2\sigma$
0.11456	0.493(18)	0.663(23)	0.0477(28)	13.9(7)
0.10190	0.833(31)	0.470(16)	0.0435(25)	10.8(6)
0.09495	1.006(41)	0.430(16)	0.0426(27)	10.1(6)
0.08333	1.288(30)	0.381(10)	0.0435(18)	8.8(4)
0.07490	1.484(22)	0.360(7)	0.0443(13)	8.1(3)
0.06667	1.720(18)	0.341(6)	0.0442(11)	7.7(3)
	∞	0.236(39)	0.0465(34)	6.1(1.1)
Wilson lo	ор	0.281(5)	0.0466(2)	6.03(11)

Coulomb force strongly depends on quark mass

Taichi Kawanai and Shoichi Sasaki. Phys.Rev.Lett.,107:091601, 2021.

	(a) Λ	8			(b) Σ_s			($(c) \Xi_{ss}$		
	J^P	Theor [MeV	ry Ez 7] [M	xp. [eV]	J^P	Theory [MeV]	Exp. [MeV]		J^P	Theory [MeV]	Exp. [MeV]
	$\frac{1}{2}^{+}$	1116	3 11	16	$\frac{1}{2}^{+}$	1197	1192		$\frac{1}{2}^{+}$	1325	1314
	2	1799	9 1560	-1700	2	1895	1630-169	90	2	1962	
		1922	2 1750	-1850		2016				2131	
	$\frac{3}{2}^{+}$	1882	2 1850	-1910	$\frac{3}{2}^{+}$	1391	1385		$\frac{3}{2}^{+}$	1525	1530
	2	2030)		2	2004			2	2034	
		2100)			2028				2115	
	$\frac{5}{2}^{+}$	1891	1815	-1825	$\frac{5}{2}^{+}$	2012	1900-193	35	$\frac{5}{2}^{+}$	2040	
	-	2045	5 2090	-2140	-	2085			-	2166	
		2143	3			2091				2211	
	$\frac{1}{2}^{-}$	1526	5 14	405	$\frac{1}{2}^{-}$	1654	(≈1620)	$\frac{1}{2}^{-}$	1778	
		1665	5 1660	-1680		1734	1730-180	00		1875	
		1777	7 1720	-1850		1751				1910	
	$\frac{3}{2}^{-}$	1537	7 15	520	$\frac{3}{2}^{-}$	1660	1665-168	35	$\frac{3}{2}^{-}$	1782	1820
		1685	5 1685	-1695		1755	1900-195	50		1877	
		1810)			1760				1920	
	$\frac{5}{2}$	1814	4 1810	-1830	$\frac{5}{2}^{-}$	1762	1770-178	80	$\frac{5}{2}$	1933	
		2394	ł			2324				2460	
		2448	3			2427				2518	
Paramo	tore										
η	n_q	m_s	m_c	m_b	b	K	$\alpha_{\rm ss} \alpha$	$\alpha_{\rm so}(=\alpha_{\rm t})$	$_{\rm ten})$	\mathbf{C}	Λ
[M	eV] [N	MeV] [MeV]	$[\mathrm{MeV}]$	$[GeV^2]$	²] [MeV	V]			[MeV]	$[\mathrm{fm}^{-1}]$
3(00	590	1841	5208	0.225	90	1.4	0.08	-	1746.6	3.5

The number of λ and ρ -mode

flavor	l	L	Ι	s	S	mode	J	
	0	1	1	0	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$	
Λ_Q	1	0	1	1	1/2	$ ho_{1/2}$	$1/2^-, 3/2^-$	2λ -modes 5ρ -modes
	1	0	1	1	3/2	$\rho_{3/2}$	$1/2^-, 3/2^-, 5/2^-$	
	0	1	1	1	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$	$ \qquad \Sigma_{O}$
Σ_Q	0	1	1	1	3/2	$\lambda_{3/2}$	$1/2^-, 3/2^-, 5/2^-$	5λ -modes 2ρ -modes
	1	0	1	0	1/2	$ ho_{1/2}$	$1/2^-, 3/2^-$	
	0	1	1	0	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$	
	1	0	1	1	1/2	$ ho_{1/2}$	$1/2^-, 3/2^-$	
Ξ_Q	1	0	1	1	3/2	$\rho_{3/2}$	$1/2^-, 3/2^-, 5/2^-$	
	0	1	1	1	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$	
	0	1	1	1	3/2	$\lambda_{3/2}$	$1/2^-, 3/2^-, 5/2^-$	
	1	0	1	0	1/2	$\rho_{1/2}$	$1/2^-, 3/2^-$	
	0	1	1	1	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$	Ξ_{00}
Ξ_{QQ}	0	1	1	1	3/2	$\lambda_{3/2}$	$1/2^-, 3/2^-, 5/2^-$	5λ -modes 20 -modes
	1	0	1	0	1/2	$\rho_{1/2}$	$1/2^-, 3/2^-$	
	0	1	1	1	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$	
Ω_{QQ}	0	1	1	1	3/2	$\lambda_{3/2}$	$1/2^-, 3/2^-, 5/2^-$	
	1	0	1	0	1/2	$\rho_{1/2}$	$1/2^-, 3/2^-$	
Ω_{QQQ}	0	1	1	1	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$	
	1	0	1	0	1/2	$\rho_{1/2}$	$1/2^-, 3/2^-$	- 26

Heavy quark spin conserve in heavy quark limit

$$[H, \mathbf{s}_Q] = [H, \mathbf{J} - \mathbf{s}_Q] = [H, \mathbf{j}] = 0$$

Heavy quark spin conserve in heavy quark limit

$$[H, \mathbf{s}_{Q}] = [H, \mathbf{J} - \mathbf{s}_{Q}] = [H, \mathbf{j}] = 0$$

This leads to ..
$$j + 1/2 \qquad \qquad j - 1/2$$

We will see two state degenerate
in the heavy quark limit
(HQS doublet)

The number of spin singlet and doublet for P-wave state $\mathbf{j} = \mathbf{S} + \mathbf{l} + \mathbf{L}$

flavor	l	L	Ι	s	S	mode	J
	0	1	1	0	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$
Λ_Q	1	0	1	1	1/2	$\rho_{1/2}$	$1/2^{-}, 3/2^{-}$
	1	0	1	1	3/2	$\rho_{3/2}$	$1/2^-, 3/2^-, 5/2^-$
	0	1	1	1	1/2	$\lambda_{1/2}$	$1/2^-, 3/2^-$
Σ_Q	0	1	1	1	3/2	$\lambda_{3/2}$	$1/2^-, 3/2^-, 5/2^-$
	1	0	1	0	1/2	$\rho_{1/2}$	$1/2^-, 3/2^-$
					1.10		

The number of spin singlet and doublet for P-wave state

Quark mass dependence of Excited energy

Quark mass dependence of Probability

Decay pattern

Our prediction PDG Data $P_{\lambda}:P_{\rho}$ JVD State Λ(1890)3/2+ Λ(1520) 3/2-0.97:0.03 Λ(1670) 1/2-0.065:0.935 Σ(1775)1/2 A(1690)3/2-Σ(1750)1/2-Λ(1690) 3/2-0.032:0.968 **Σ(1670)3/2-** Λ(1670)1/2-<u>A(1520)3/2-</u> Λ(1890) 3/2+ 0.99:0.001 Λ(1820) 5/2+ 0.99:0.001 0.11:0.89 Σ(1750) 3/2-0.5 0 3/2-0.79:0.21 Σ(1670) $R(KN)/R(KN+\pi\Sigma)$ ρ □ ストレンジ領域においてもλ, p モード依存性が見られる. □ ∧粒子に対しては2つのモードは殆ど混ざらず、それが実験データ に反映しているように見える

□ チャーム領域での実験結果はまだほとんどない

Quark mass dependence of Excited energy

Quark mass dependence of Excited energy

Angular momentum $I\lambda$ L S_qq S $\Lambda\left(\frac{3}{2}^+\right)$

(1^{+})	N	Ιρ	Iλ	L	s_qq	S
$\left(\frac{1}{2}\right)$	1	0	0	0	0	1/2
	2	1	1	0	1	1/2
	3	1	1	1	1	1/2
	4	1	1	1	1	3/2
	5	1	1	2	1	3/2

Λ	(<u>5</u> 2	+

Λ

N	Ιρ	Iλ	L	s_qq	S
1	1	1	1	1	3/2
2	1	1	2	1	1/2
3	1	1	2	1	3/2
4	2	0	2	0	1/2
5	0	2	2	0	1/2

N	Ιρ	Iλ	L	s_qq	S
1	1	1	0	1	3/2
2	1	1	1	1	1/2
3	1	1	1	1	3/2
4	1	1	2	1	1/2
5	1	1	2	1	3/2
6	2	0	2	0	1/2
7	0	2	2	0	1/2

40

Angular momentum

	N	Ιρ	Iλ	L	s_qq	S
$\Sigma\left(\frac{1}{2}^+\right)$	1	0	0	0	1	1/2
~ /	2	1	1	0	0	1/2
	3	1	1	1	0	1/2
	4	2	0	2	1	3/2
	5	0	2	2	1	3/2

$\nabla \left(z + \right)$						
$\Sigma(\frac{5}{2})$	N	Ιρ	Iλ	L	s_qq	S
	1	1	1	2	0	1/2
	2	2	0	2	1	1/2
	3	2	0	2	1	3/2
	4	0	2	2	1	1/2
	5	0	2	2	1	3/2

$$\Sigma\left(\frac{3}{2}^+\right)$$

Ν	Ιρ	Iλ	L	s_qq	S
1	0	0	0	1	3/2
2	1	1	1	0	1/2
3	1	1	2	0	3/2
4	2	0	2	1	1/2
5	2	0	2	1	3/2
6	0	2	2	1	1/2
7	0	2	2	1	3/2

41

Angular momentum

$$\Lambda\left(\frac{1}{2}^{-},\frac{3}{2}^{-}\right)$$

$$\Lambda\left(\frac{5}{2}^{-}\right)$$

Ν	Ιρ	Iλ	L	s_qq	S
1	0	1	1	0	1/2
2	1	0	1	1	1/2
3	1	0	1	1	3/2

N	Ιρ	Iλ	L	s_qq	S
1	1	0	1	1	3/2

N	Ιρ	Iλ	L	s_qq	S
1	1	0	1	0	1/2
2	0	1	1	1	1/2
3	0	1	1	1	3/2

Angular momentum

Because of Pauli principal

$$(-1)^{s+l+t} = 1$$

