$\bar{K}N$ interactions in the nuclear medium and \bar{K} -nuclear quasi-bound states

<u>J. Mareš</u>¹, N. Barnea², A. Cieplý¹, E. Friedman², A. Gal², D. Gazda^{1,3}

Nuclear Physics Institute, Czech Academy of Sciences, 250 68 Řež, Czech Republic

² Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel ³ ECT*, Villa Tambosi, I-38123 Villazzano (Trento), Italy

This review summarizes our present understanding of in-medium $\bar{K}N$ interactions and related recent studies of \bar{K} -nuclear bound states.

We focus on the role played by medium-modifications and subthreshold energy dependence of the $\bar{K}N$ scattering amplitudes derived from a chirally motivated model. The in-medium $\bar{K}N$ scattering amplitudes are employed in self-consistent calculations of \bar{K} -nuclear quasi-bound states across the periodic table. Two-nucleon $K^-NN \to YN$ absorption modes estimated from fitting to kaonic atoms are considered. Dynamical polarization effects as well as the p-wave interactions generated by the $\Sigma(1385)$ subthreshold resonance are discussed. Sizable widths, comparable or even larger than the corresponding binding energies of the \bar{K} -nuclear quasi-bound states are anticipated.