The 12th International Conference on Hypernuclear and Strange Particle Physics (HYP2015), Tohoku University, Sendai, Japan, Sep.7, 2015

K⁻pp-K⁰np coupled-channel DWIA calculation for (K⁻, n) reaction spectrum

<u>Takahisa Koike</u> & Toru Harada, Osaka Electro-Communication Univ.

Akinobu Dote, KEK Theory Center, IPNS, KEK

Introduction

• J-PARC E15 experiment; search for "K⁻pp" by ³He(in-flight K⁻, n)

---- the analysis is under progress.

- Calculation of ³He(in-flight K⁻, n) missing-mass spectra by DWIA using Green's function method;
 - Koike & Harada, PLB652 (2007) 262 / PRC80 (2009) 055208.
 K^{bar}NN (I=1/2) in isospin base
 - Yamagata-Sekihara *et al.*, PRC80 (2009) 045204.
 K⁻pp, K^{0bar}np in charge base w/o coupling
 - --- the further improvements of the calculations would be needed for the precise comparison with experimental data.

Our previous calculation

Koike & Harada, PRC80 (2009) 055208.

[$K \times \{NN\}_{I=1}$] $_{I=1/2}$ single channel in isospin basis phenomenological potentials simulating various cases

Our previous calculation

Koike & Harada, PRC80 (2009) 055208.

 $[K \times {NN}]_{I=1}]_{I=1/2}$ single channel in isospin basis phenomenological potentials simulating various possibilities

We report the new results of ³He(in-flight K⁻, n) reaction spectrum by DWIA calculation with following improvements;

present approach	previous approach
K ⁻ pp – K ⁰ np coupled-channel Green's function method in charge base (I=1/2 & 3/2)	KNN (I=1/2) single-channel Green's function method in isospin base
Microscopic G-matrix folding potential with chiral SU(3) interaction	Phenomenologial potential using phase space factor
Adding $\overline{\mathbf{K}}^{0}\mathbf{d}$ S = 1 contribution	Only S = 0 contribution

symbolically represented as "K⁻pp"

DWIA framework using Green's function method

$$\frac{d^2\sigma}{d\Omega_n dE_n} = \beta (-)\frac{1}{\pi} Im \left[F^{\dagger}GF\right]$$

where,

$$F = -\chi_N^{(-)*} \chi_{K^-}^{(+)} \bar{f}_{K^- n \to nK^-} \langle \alpha | \hat{\psi}_n | \Psi_A \rangle + \chi_N^{(-)*} \chi_{K^-}^{(+)} \frac{1}{\sqrt{2}} \bar{f}_{K^- p \to n\bar{K}^0} \langle \alpha | \hat{\psi}_p | \Psi_A \rangle$$

neutron hole
$$\equiv -\bar{f}_{K^- n \to nK^-} \tilde{F}_1 + \frac{1}{\sqrt{2}} \bar{f}_{K^- p \to n\bar{K}^0} \tilde{F}_2$$

In coupled channel scheme,

• G-matrix folding potentials for \overline{K} -"NN" system

• $K^{bar}N-\pi\Sigma(-\pi\Lambda)$ interaction

Chiral SU(3) + K^{bar}N Scattering length

$$\hat{V}_{MB}^{\rm NRv2} = \sum_{\alpha,\beta} -\frac{C_{\alpha\beta}^{I}}{8f_{\pi}^{2}}(\omega_{\alpha} + \omega_{\beta})\sqrt{\frac{1}{m_{\alpha}m_{\beta}}}g_{\alpha\beta}^{I}(r)$$

NRv2: Dote et al., NPA912(2013)66.

• G-matrix in nuclear medium Q_N

$$g = v + v \frac{q_N}{E_{\bar{K}} - Q_N T Q_N} g$$

Parameters: $E_{st} = -20$ MeV, $k_f = 1.36$ fm⁻¹

• Folding model potential $U_{\alpha\alpha'} = \langle \phi_{\alpha} | \sum_{i} \bar{g} | \phi_{\alpha'} \rangle (1 - \kappa_{NN})$ rearrangement effects

 ϕ_{α} : NN w.f. gaussian (r.m.s) = 2.8 fm

• Calculated \overline{K} -"NN" potentials

B.E. = 15 MeV, $\Gamma \sim 120$ MeV

Approximation; • No "NN" shrinking effect

Coupled-channel Green's function

- Ch.1; K⁻pp = K⁻ + $\{pp\}_{s=0}$ core,
- Ch.2; $K^0 np = \overline{K}^0 + \{np\}_{s=0}$ core,

$$\begin{bmatrix} E_1 - T_1^{(l)} - U_{11}(r) & -U_{12}(r) \\ -U_{21}(r) & E_2 - T_2^{(l)} - U_{22}(r) \end{bmatrix} \begin{bmatrix} G_{11}^{(l)}(E;r,r') & G_{12}^{(l)}(E;r,r') \\ G_{21}^{(l)}(E;r,r') & G_{22}^{(l)}(E;r,r') \end{bmatrix}$$

where
$$T_i^{(l)} = \frac{\hbar^2}{2\mu_i} \left(-\frac{\partial^2}{\partial r^2} + \frac{l(l+1)}{r^2}\right) \quad (i = 1, 2)$$

 $E_2 = E_1 + \Delta Q$, $\Delta Q \equiv M(\bar{K}^0 + n + p) - M(K^- + p + p) = 5.23 \text{ MeV}$

$$\begin{cases} U_{11}: K^--"pp" \text{ potential} \\ U_{12} = U_{21}: \text{ coupling potential between } K^--"pp" \text{ and } \bar{K}^0-"np" \\ U_{22}: \bar{K}^0-"np" \text{ potential} \end{cases}$$

• ³He(K⁻, n) inclusive spectrum at $p_{\rm K}$ = 1 GeV/c, $\theta_{\rm n} = 0^{\circ}$

E (MeV)

• Importance of \overline{K}^0d (S = 1) channel

Koike & Harada, Nucl. Phys. A804 (2008) 231.

$\overline{T(T_C)}$	$S(S_C)$	$\sigma(K^-, n)$
$\frac{1}{2}(0)$	1 (1)	$\frac{3}{2} f_{K^-p\to n\bar{K}^0} ^2$ K ⁰ d
$\int \frac{1}{2} (1)$	0 (0)	$\frac{2}{3} f_{K^-n\to nK^-} + \frac{1}{2}f_{K^-p\to n\bar{K}^0} ^2$
$\frac{3}{2}(1)$	0 (0)	$\frac{1}{3} f_{K^-n\to nK^-} - f_{K^-p\to n\bar{K}^0} ^2$
$ f_{K^-n \to nK^-} ^2$	$+ \frac{1}{2} f_{K^- p \to n \bar{K}^0} ^2 -$	- (interference) in charge basis
$K^{-}{pp}_{s=0}$	$\overline{\mathbf{K}}^{0}\{\mathbf{np}\}_{\mathbf{s}=0}$	

Production cross section $\sigma(\overline{K^0}d) \sim 3 \times \sigma(\overline{K^0}{\{np\}}_{s=0})$

Fairly large contribution

E (MeV)

Comparison with J-PARC data

Conversion spectrum

E (MeV)

• Summary and problems

• The bound state peak would not be visible due to the small B.E. and the large width.

--- consistent with the preliminary experimental data.

- The contribution of $\overline{K}{}^{0}d$ (S = 1) channel could be comparable with that of K⁻pp + $\overline{K}{}^{0}$ np (S = 0) in QF region.
- For more quantitative comparison with J-PARC data, we need;
 - a. to include the "NN" core-nuclear breakup process and the QF- $\Lambda(1405)$ formation process.
 - b. to decompose the inclusive spectrum into (semi-)exclusive spectra.