
Double resonance in Dalitz plot of $M(p\Lambda) - M(K\Lambda)$ in DISTO data on $p + p \rightarrow p + \Lambda + K^+$ at 2.85 GeV

<u>K. Suzuki¹</u>, M. Maggiora², P. Kienle³ and T. Yamazaki^{4,5} on behalf of the DISTO Collaboration

¹Stefan Meyer Institute for Subat. Phys. Austrian Academy of Sciences, Vienna, Austria ²Dipartimento di Fisica Generale "A. Avogadro" and INFN, Torino, Italy ³Excellence Cluster Universe, Technische Universität München, Garching, Germany ⁴Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan ⁵RIKEN, Nishina Center, Wako, Saitama 351-0198, Japan

We report here further analyses of exclusive strangeness production reactions $pp \rightarrow pK^+\Lambda$ at bombarding energies of $T_p = 2.50$ GeV and 2.85 GeV performed by the DISTO collaboration at the SATURNE proton synchrotron in Saclay, France. This follows our previous publications [1, 2]. At $T_p = 2.85$ GeV the K^+ missing mass and $p\Lambda$ invariant mass spectra for high transverse momenta of p and K^+ revealed a broad resonance X(2265) of $26 - \sigma$ confidence with a mass $M_X = 2267 \pm 3(\text{stat}) \pm 5(\text{syst}) \text{ MeV/c}^2$ and a width $\Gamma_X = 118 \pm 8(\text{stat}) \pm 10(\text{syst})$ MeV. The cross section for $pp \rightarrow K^+X(2265)$ was determined to be $3.9 \pm 0.9\mu$ b, which turned out to be comparable with that for the production of the $\Lambda(1405)$ resonance, supporting the mechanism of high sticking of $\Lambda(1405) + p$ in forming a dense K^-pp resonance [3]. In addition we have observed a double resonance structure in the ΛK^+ vs $p\Lambda$ Dalitz plot; the ΛK^+ invariant mass spectrum is enhanced at around 1.70 GeV/c² indicating that the N*(1710) resonance with a decay branch to ΛK^+ plays an important role in the formation of the X(2265) resonance. It is to be noted that this "double resonance" enhancement zone observed at $T_p = 2.85$ GeV cannot be populated at higher incident energy such as 3.50 GeV. This may explain why the HADES experiment [4] at 3.50 GeV did not observe the same double-resonant X.

References

- [1] T. Yamazaki *et al.*, Phys. Rev. Lett. **104**, 132502 (2010).
- [2] P. Kienle *et al.*, Eur. Phys. J. A **48**, 183 (2012).
- [3] T. Yamazaki and Y. Akaishi, Phys. Rev. C 76 045201 (2007).
- [4] L. Fabbietti *et al.*, Nucl. Phys. A **914**, 60-68 (2013).