Double Resonance in Dalitz plot of $M_{p\Lambda}$ - $M_{K\Lambda}$ in DISTO data on $p+p \rightarrow p+\Lambda+K^+$ at 2.85 GeV

Ken Suzuki¹, Toshimitsu Yamazaki², Marco Maggiora³, Paul Kienle^{1,4+} for the DISTO collaboration

¹Stefan-Meyer-Institut für subatomare Physik, Österreichische Akademie der Wissenschaften, ²Nishina center, RIKEN, ³INFN-Torino, ⁴Technische Universität München

Introduction: X(2265) in the DISTO data

$K^-pp\ production\ mechanism$ $\Lambda(1405)p \rightarrow K^-pp$

p+p, unconventional

"hard collision/formation mechanism"

DISTO

T. Yamazaki et al., PRL 104 (2010) 132502

Mass 2.267±3(stat.)±5(syst.) GeV/c² width 118±8(stat.)±10(syst.) MeV

E27@J-PARC

Y. Ichikawa et al., PTEP 2015 021D01

Mass 2.27⁺¹⁸₋₁₇(stat.)⁺³⁰₋₂₁ (syst.) GeV/c² width 162⁺⁸⁷₋₄₅(stat.)⁺⁶⁶₋₇₈(syst.) MeV

K^- pp production mechanism $\Lambda(1405)p \rightarrow K^-$ pp

T. Yamazaki et al., PRL 104 (2010) 132502

Mass 2.267±3(stat.)±5(syst.) GeV/c² width 118±8(stat.)±10(syst.) MeV

<u>(π, K), conventional</u>

Y. Ichikawa *et al.*, PTEP 2015 021D01 Mass 2.27⁺¹⁸₋₁₇(stat.)⁺³⁰₋₂₁ (syst.) GeV/c² width 162⁺⁸⁷₋₄₅(stat.)⁺⁶⁶₋₇₈(syst.) MeV

X(2265) energy dependence

 $\Lambda^{*}(1405)$ involved in the X(2265) production mechanism

Comment on Epple/Fabbietti paper on DISTO analysis (arXiv:1504.02060v1)

"The two vertical dashed lines mark the excess energy for the $\Lambda(1405)$ production for the two data sets, measured by DISTO (48.8 MeV and 161.2 MeV). With help of the two curves the ratio of the Λ^* production cross section between the two DISTO energies was determined to be $\sigma_{pK} + \Lambda(1405)$ (2.5 GeV)/ $\sigma_{pK} + \Lambda(1405)$ (2.85 GeV)=0.23, for the scaled curve and 0.3 for the curve based on the free" Epple and Fabbietti, arXiv:1504.02060v1

 $\sigma_{pK} + \Lambda(1405) (2.5 \text{ GeV}) / \sigma_{pK} + \Lambda(1405) (2.85 \text{ GeV}) \sim 0.1$

experimentally almost no population

X(2265) in a Dalitz plot

Large Angle Proton cut

Population of the X(2265) is localised at the crossing point of two resonance band, X(2265) and N*(1710) \Rightarrow **Double Resonance**

Angular correlation of ΛK+

the strong attractive K+ Λ angular correlation is related to N^{*} production

 $\cos\theta(\Lambda-K^+)$ ~1 associated with X(2265) production

$\Lambda K^+=N^*$ resonance and FSI

The resonant structure at ~1.71 GeV, located in the lower-M(ΛK^+) region of the Dalitz plot, \Leftrightarrow attractive correlation; $\cos\theta(\Lambda - K^+) \rightarrow 1$.

Another consequence of the Double Resonance: Comment on the HADES Data at Tp=3.5 GeV

Double resonance feature of the X(2265) population set an upper limit on Tp to be ~ 3.1 GeV. At Tp=3.5 GeV the X(2265) population zone is outside the kinematically allowed area.

Comment on Epple/Fabbietti paper on DISTO analysis (arXiv:1504.02060v1)

Epple and Fabbietti, arXiv:1504.02060v1

<u>An remarkable result</u> (violet dashed in Fig. 2) is obtained if one only selects events where $M_{K+\Lambda} > 1810 \text{ MeV/c}^2$.

cut on a correlated distribution, especially such an drastic one, influences in its projection as a trivial consequence. Epple and Fabbietti, arXiv:1504.02060v1

... deviation spectra that we have obtained by dividing the measured spectra by a partial wave analysis model [31, 32] In contrast to the Figs. 2 and 3, the deviation spectra are in this case rather flat around one and ... 0.045 = 2.85 GeV

Our DEV plot is to see a deviation from PS distribution. If you change the denominator of divisional operation, by including something else, the results changes as a trivial consequence.

A consistent picture on production mechanisms that explains these experimental observations would be ..

- X(2265) is the *K pp* state
 - which is populated by the "hard collision/formation" mechanism
 - Λ(1405)-p produced in short range has a high sticking probability even at *q* as high as 1.6 GeV/c, provided the object is high density object
 - Otherwise K pp is not populated in the p+p reaction
- *K pp* population in the *pp* reaction by the hard collision/formation mechanism
 - requires minimum $T_p \sim 2.7$ GeV. At $T_p = 2.5$ GeV the $\Lambda(1405)$ is not populated and thus no population of X(2265)
 - requires maximum $T_p \sim 3.1$ GeV.
 - because of the Double resonance feature of its population
 - K -A emission into the same direction, indicating attractive FSI and/or N* resonance
 - X(2265) cannot be populated at T_p =3.5 GeV (HADES) because it is outside the kinematically allowed zone
 - making p+p reaction $T_p=2.85$ GeV very unique
- X(2265) population in d(π +,K+) reaction at J-PARC E27
 - the small sticking probability around 1% as observed in the J-PARC E27 is consistent with the expectation in Ref. Yamazaki and Akaishi, PRC76 (2007) 045201

Summary and Outlook

- Various data are by now available related the DISTO X(2265)
 - DISTO X(2265) localised at $M_{p\Lambda}{\sim}2.265~GeV/c^2,~M_{K\Lambda}{\sim}1.71~GeV/c^2$ in the Dalitz plot
 - X(2265) production pronounced at $T_p=2.85$ GeV cannot be populated at higher T_p , as seen by HADES
 - suggesting the validity of the "hard collision/formation mechanism"
- Consistent with the picture, K^-pp produced with Λ^* as a doorway, PRC76 (2007) 045201, both in p+p and $d(\pi^+, K^+)$ reactions
- Full efficiency/acceptance correction coming