Possible existence of Λ^* strangelets

Yoshinori Akaishi¹, Toshimitsu Yamazaki^{1,2}

¹RIKEN, Nishina Center, Wako, Saitama 351-0198, Japan

²Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

The $\Lambda^*=\Lambda(1405)$ plays an essential role in forming \bar{K} nuclear clusters (KNC). A microscopic variational calculation shows that the simplest KNC, K^-pp , has the structure of $\Lambda^* - p = (K^-p) - p$, where a migrating anti-kaon between two nucleons produces "superstrong nuclear force" (SSNF) [1] by Heitler-London-Heisenberg's mechanism. Recent K^-pp data from DISTO [2] and J-PARC E27 [3] suggest that the SSNF attraction between Λ^* and p is largely enhanced inside the compact K^-pp . In the case of K^-K^-pp we can expect more than doubly enhanced attraction between two $\Lambda^*(K^-p)$'s. It is vitally important to obtain experimental information about K^-K^-pp by high-energy pp collisions around 7-GeV incident energy [4] in order to establish the covalent attraction due to multi- \bar{K} migration. Since the boson (\bar{K}) covalency is always additive, we can predict the possible existence of several-body Λ^* strangelets including multi- \bar{K} 's, which could be stable against some strong decays. Relativistic heavy-ion reactions producing high-density objects may provide a chance to observe such strangelets where migrating multi- \bar{K} 's form, together with several neighboring nucleons, sufficiently long-lived clusters which consist of Λ^* 's. Such objects might open a way to Λ^* condensed matter.

Figure 1: Schematic picture of Λ^* condensed matter, where K^- is confined in each Λ^* to avoid efficiently the K^-K^- repulsion.

References

- [1] T. Yamazaki and Y. Akaishi, Proc. Jpn. Acad. B 83, 144 (2007).
- [2] T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010).
- [3] Y. Ichikawa et al., Prog. Theor. Exp. Phys. 021D01 (2015).
- [4] M. Hassanvand *et al.*, Phys. Rev. C 84, 015207 (2011).