HYP2015, Sendai September 7, 2015

Possible Existence of Λ^* **Strangelets**

---- toward $\Lambda^* = (K^-p)^{I=0}$ condensed matter ----

Yoshinori AKAISHI & Toshimitsu YAMAZAKI

<u>"A(1405) Ansatz"</u>

Y. Akaishi & T. Yamazaki, Phys. Rev. C <u>65</u> (2002) 044005 T. Yamazaki & Y. Akaishi, Phys. Lett. B <u>535</u> (2002) 70

К-р

Which is the Λ(1405) mass, 1405 or 1420 MeV/c²?

$\Sigma\pi$ invariant mass from stopped K⁻ on ⁴He

J. Esmaili, Y. Akaishi & T. Yamazaki, Phys. Lett. B686 (2010) 23

$$M = 1405.5^{+1.4}_{-1.0} \text{ MeV}/c^2$$
 and $\Gamma = 23.6^{+4}_{-3} \text{ MeV}$

A(1405) 1/2-

 $I(J^{P}) = 0(\frac{1}{2})$ Status: ****

2015

/(1405) MASS

	PRODUCTION EXPERIMENTS											
1405.1+ 1.3 OUR AVERAGE												
	1405	+11 - 9		HASSANVAND	13	SPEC	$pp \rightarrow p\Lambda(1405)K^+$					
	1405	+ 1.4 - 1.0		ESMAILI	10	RVUE	${}^{4}\text{He}\; K^{-} ightarrow \; \Sigma^{\pm} \pi^{\mp} X$ at rest					
	1406.	5± 4.0		¹ DALITZ	91		M-matrix fit					
 We do not use the following data for averages, fits, limits, etc. 												
	1391	± 1	700	¹ HEMINGWAY	85	HBC	K ⁻ p 4.2 GeV/c					
	~ 1405		400	² THOMAS	73	HBC	π ⁻ p 1.69 GeV/c					
	1405		120	BARBARO	68B	DBC	K ⁻ d 2.1–2.7 GeV/c					
	1400	± 5	67	BIRMINGHAM	66	HBC	К р 3.5 GeV/с					
	1382	± 8		ENGLER	65	HDBC	$\pi^{-} p, \pi^{+} d$ 1.68 GeV/c					
	1400	± 24		MUSGRAVE	65	HBC	<u>₽</u> p 3-4 GeV/c					
	1410			ALEXANDER	62	HBC	π ⁻ p 2.1 GeV/c					
	1405			ALSTON	62	HBC	K p 1.2-0.5 GeV/c					
	1405			ALSTON	61B	HBC	K ⁻ p 1.15 GeV/c					

A(1405) WIDTH

PRODUCTIO	PRODUCTION EXPERIMENTS									
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT						
50.5± 2.0 OUR	AVERAGE									
62 ±10		HASSANVAND 13	SPEC	$pp \rightarrow p\Lambda(1405)K^+$						
50 ± 2		¹ DALITZ 91		M-matrix fit						

We do not use the following data for averages, fits, limits, etc.

К-рр

Variational wave function of K-pp

ATMS

Amalgamation of Two-body correlations into Multiple Scattering process

$$\Psi = \left[\underbrace{ \left\{ f^{I=0}(r_{12}) \hat{P}_{12}^{I=0} + f^{I=1}(r_{12}) \hat{P}_{12}^{I=1} \right\}}_{2} f_{NN}(r_{23}) f(r_{31}) + f(r_{12}) f_{NN}(r_{23}) \underbrace{ \left\{ f^{I=0}(r_{31}) \hat{P}_{31}^{I=0} + f^{I=1}(r_{31}) \hat{P}_{31}^{I=1} \right\}}_{4} \right] | T = 1/2 \right)$$

$$\hat{P}_{12}^{I=0} = \frac{1 - \vec{\tau}_{K} \vec{\tau}_{N}}{4}, \quad \hat{P}_{12}^{I=1} = \frac{3 + \vec{\tau}_{K} \vec{\tau}_{N}}{4}$$

$$| T = 1/2 \right\rangle = \sqrt{\frac{3}{4}} \left[\left(\overline{K}_{1} N_{2} \right)^{0,0} p_{3} \right] + \sqrt{\frac{1}{4}} \left[-\sqrt{\frac{1}{3}} \left(\overline{K}_{1} N_{2} \right)^{1,0} p_{3} + \sqrt{\frac{2}{3}} \left(\overline{K}_{1} N_{2} \right)^{1,1} n_{3} \right]$$

$$A^{*}p$$

Euler-Lagrange equation

 $\delta_{f}\left\{\left\langle \boldsymbol{\Psi}\left|\boldsymbol{H}\right|\boldsymbol{\Psi}\right\rangle-\lambda\left\langle \boldsymbol{\Psi}\left|\boldsymbol{\Psi}\right\rangle\right\}=0$

$$v_{\rm KN}^{T=0}(r) = \{-595 - i83\}_{\rm MeV} \exp\{-(r/0.66_{\rm fm})^2\}$$
$$v_{\rm KN}^{T=1}(r) = \{-175 - i105\}_{\rm MeV} \exp\{-(r/0.66_{\rm fm})^2\}$$
$$v_{\rm NN}(r) = 2000_{\rm MeV} \exp\{-(r/0.447_{\rm fm})^2\} - 270_{\rm MeV} \exp\{-(r/0.942_{\rm fm})^2\} - 5_{\rm MeV} \exp\{-(r/2.5_{\rm fm})^2\}$$

Density distributions of K^{bar}-N

T. Yamazaki and Y. Akaishi, Phys. Rev. C 76 (2007) 045201

Adiabatic p-p potential in K-pp

K-pp quasi-bound state

K-K-pp & strangelets

$\Lambda^*\Lambda^*$ model for K⁻K⁻pp

Possible existence of "few-body Λ^* strangelet"

H*-H* double folding potential

 $\Lambda^* - \Lambda^*$ potential

 $\hat{}$

$$U(\vec{R}) = \int d\vec{r}' d\vec{r} \rho_{\rm B}(\vec{r}') v(\vec{R} + \vec{r}' - \vec{r}) \rho_{\rm A}(\vec{r})$$

<u>Λ* effective mass in H* strangelet</u>

 $\mathbf{H}^{*} = \Lambda^{*}\Lambda^{*} = \mathbf{K}^{-}\mathbf{K}^{-}\mathbf{pp}$

jade/HsHs.f jade/ATMS3Hs2.f jade/ATMS4Hs2.f

Remarks

The $\Lambda^*=\Lambda(1405)$ plays an essential role in forming "K^{bar} Nuclear Clusters" (KNC).

Experimental information on $\Lambda^*p=K^-pp$ and $\Lambda^*\Lambda^*=K^-K^-pp$ is vitally important to establish the "super-strong nuclear force" (SSNF).

SSNF due to boson (K^{bar}) covalency predicts the possible existence of "finite Λ^* strangelets", which could be stable against some strong decays.

The late Prof. Nishijima

Gateway to "Swan Nuclear Physics"

T. Yamazaki, Y. Akaishi & M. Hassanvand, Proc. Jpn. Acad. B 87 (2011) 362

Thank you very much!