Double-pole structure on a prototype of kaonic nuclei ``K⁻pp"

<u>Akinobu Doté (KEK Theory Center, IPNS / J-PARC branch)</u> Takashi Inoue (Nihon university) Takayuki Myo (Osaka Institute of Technology)

- 1. Introduction
- 2. <u>Method</u>
 - Feshbach projection of coupled-channel Complex Scaling Method
- 3. <u>Result</u>
 - "K-pp" as a K^{bar}NN-πYN system with ccCSM+Feshbach method
- 4. Double pole of "K-pp"?
- 5. Summary and future plan

12th International Conference on Hypernuclear and Strange Particle Physics (HYP2015) 07. Sep. '15 @ Tohoku University Centennial Hall (Kawauchi Hagi Hall), Sendai, Japan

1. Introduction

Kaonic nuclei = Exotic system !?

- Strong $K^{bar}N$ attraction $\leftarrow \Lambda(1405) \sim$ quasi-bound state of I=0 $K^{bar}N$
 - Deeply bound (Total B.E. ~100MeV)
 - Quasi-stable ($\pi\Sigma$ decay mode closed)
 - Highly dense state ... anti-kaon attracts nucleons

Y. Akaishi and T. Yamazaki, PRC65, 044005 (2002)

A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, PRC70, 044313 (2004)

<u>"K-pp" = A prototype of kaonic nuclei</u>

<u>Experimental search for "K⁻pp"</u>

•	FINUDA	: K ⁻ stopped on Li, C, Al target
		PRL 94, 212303 (2005)
•	DISTO	: $p + p \rightarrow p + \Lambda + K^+$ at $T_p=2.85 \text{ GeV}$
		PRL104, 132502 (2010)
•	J-PARC E2	$Y : d(\pi^+, K^+) X$ at $P_{\pi} = 1.69 \text{ GeV/c}$
		PTEP 021D01 (2015)

Signal at ~100 MeV below K pp threshold

- J-PARC E15 : ³He(K⁻, n) X at P_K = 1 GeV/c PTEP 2015, 061D01
 <u>Attraction below K⁻pp threshold</u>
- LEPS/SPring8 : d(γ , π^+K^+) X at $E_{\gamma} = 1.5 2.4 \text{ GeV}$ PLB 728, 616 (2014)

No evidence of deeply bound K⁻pp

<u>Theoretica</u>	<u>l studies of "K-pp</u>	<u>B(K⁻pp) < 100 MeV</u>			
	Dote-Hyodo-Weise PRC79, 014003(2009)	Akaishi-Yamazaki PRC76, 045201(2007)	Barnea-Gal-Livertz PLB712, 132 (2012)	Ikeda-Kamano-Sato PTP124, 533 (2010)	Shevchenko-Gal- Mares PRC76, 044004(2007)
B(K⁻pp)	20±3	47	16	9~16	50~70
Γ _{mesonic}	40~70	61	41	34~46	90~110

• $\Lambda(1405) = Resonant state \& K^{bar}N$ coupled with $\pi\Sigma$

"K⁻pp" ... Resonant state of K^{bar}NN-πYN coupled-channel system

Doté, Hyodo, Weise, PRC79, 014003(2009). Akaishi, Yamazaki, PRC76, 045201(2007) Ikeda, Sato, PRC76, 035203(2007). Shevchenko, Gal, Mares, PRC76, 044004(2007) Barnea, Gal, Liverts, PLB712, 132(2012)

Resonant state	K ^{bar} + N + N
> Coupled-channe	"К-рр"
system	$\pi + \Sigma + N$

⇒ <u>"coupled-channel</u> <u>Complex Scaling Method"</u>

Complex Scaling Method

S. Aoyama, T. Myo, K. Kato, K. Ikeda, PTP116, 1 (2006) T. Myo, Y. Kikuchi, H. Masui, K. Kato, PPNP79, 1 (2014)

... Powerful tool for resonance study of many-body system

$$U(\theta): \mathbf{r} \to \mathbf{r} e^{i\theta}, \mathbf{k} \to \mathbf{k} e^{-i\theta}$$

Diagonalize $H_{\theta} = U(\theta) H U^{-1}(\theta)$ with Gaussian base,

Continuum state appears on 2θ line.

Resonance pole is off from 20 line, and independent of 0. (ABC theorem)

Chiral SU(3) potential with a Gaussian form

A. D., T. Inoue, T. Myo, Nucl. Phys. A 912, 66 (2013)

Anti-kaon = Nambu-Goldstone boson

⇒ Chiral SU(3)-based K^{bar}N potential

- Weinberg-Tomozawa term of effective chiral Lagrangian
- ➢ Gaussian form in r-space
- Semi-rela. / <u>Non-rela.</u>
- Based on Chiral SU(3) theory

 Energy dependence

A non-relativistic potential (NRv2c)

$$V_{ij}^{(I=0,1)}(r) = -\frac{C_{ij}^{(I=0,1)}}{8f_{\pi}^{2}} \left(\omega_{i} + \omega_{j}\right) \sqrt{\frac{1}{m_{i} m_{j}}} g_{ij}(r)$$

 $g_{ij}(r) = \frac{1}{\pi^{3/2} d_{ij}^3} \exp\left[-\left(r/d_{ij}\right)^2\right] : Gaussian form$

 ω_i : meson energy

Constrained by K^{bar}N scattering length

 $a_{KN(I=0)} = -1.70 + i0.67 fm, \quad a_{KN(I=1)} = 0.37 + i0.60 fm$

A. D. Martin, NPB179, 33(1979)

Λ(1405) on coupled-channel Complex Scaling Method

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.-G. Meißner, Nucl. Phys. A 725 (2003) 181

Feshbach projection on coupled-channel Complex Scaling Method <u>"ccCSM+Feshbach method"</u>

A. D., T. Inoue, T. Myo, PTEP 2015, 043D02 (2015)

<u>ccCSM+Feshbach method</u>

- $\Lambda(1405) = two-body$ system of $K^{bar}N-\pi\Sigma$ \rightarrow Explicitly treat coupled-channel problem
- •••

"K⁻pp" = three-body system of K^{bar}NN-πYN
 ... High computational cost

For economical treatment of "K⁻pp", we construct an <u>effective K^{bar}N</u> <u>single-channel potential</u> by means of Feshbach projection on CSM.

Formalism of ccCSM + Feshbach method

<u>Elimination of channels by Feshbash method</u>

Schrödinger eq. in model space "P" and out of model space "Q"

Schrödinger eq. in P-space : $(T_P + U_P^{Eff}(E))\Phi_P = E\Phi_P$

$$\begin{bmatrix} T_{P} + v_{P} & V_{PQ} \\ V_{QP} & T_{Q} + v_{Q} \end{bmatrix} \begin{pmatrix} \Phi_{P} \\ \Phi_{Q} \end{pmatrix} = E \begin{pmatrix} \Phi_{P} \\ \Phi_{Q} \end{pmatrix}$$

Effective potential for P-space

 $U_{P}^{Eff}\left(E\right) = v_{P} + V_{PO} G_{O}\left(E\right) V_{OP}$

Q-space Green function:

$$G_{Q}\left(E\right) = \frac{1}{E - H_{QQ}}$$

Extended Closure Relation in Complex Scaling Method

$$\int_{QQ} \left| \chi_{n}^{\theta} \right\rangle = \varepsilon_{n}^{\theta} \left| \chi_{n}^{\theta} \right\rangle$$
$$\int_{C} \sum_{R+B} \left| \chi_{n}^{\theta} \right\rangle \left\langle \chi_{n}^{\theta} \right| = 1$$

Diagonalize $H^{\theta}_{\alpha\alpha}$ with **Gaussian base**,

 $\sum |\chi_n^{\theta}\rangle \langle \chi_n^{\theta}| \approx 1$ Well approximated

T. Myo, A. Ohnishi and K. Kato, PTP 99, 801 (1998) R. Suzuki, T. Myo and K. Kato, PTP 113, 1273 (2005)

Express the Go(E) with Gaussian base using ECR

$$G_{\varrho}^{\theta}(E) = \frac{1}{E - H_{\varrho\varrho}^{\theta}} \approx \sum_{n} \left| \chi_{n}^{\theta} \right\rangle \frac{1}{E - \varepsilon_{n}^{\theta}} \left\langle \chi_{n}^{\theta} \right\rangle$$

H

Η

 $\left\{ \left| \chi_{n}^{\theta} \right\rangle \right\}$: expanded with Gaussian base.

$$E_{p}^{Eff}(E) = v_{p} + V_{pQ} \qquad U^{-1}(\theta)G_{Q}^{\theta}(E)U(\theta) \qquad V_{QP}$$

$$G_{Q}(E)$$

<u>Apply ccCSM + Feshbach method to K⁻pp</u>

"*K*-*pp*" ... *K*^{bar}*NN* - $\pi \Sigma N$ - $\pi AN (J^{\pi}=0, T=1/2)$

For the two-body system, $P = K^{bar}N$, $Q = \pi Y$

 $V\left(K^{bar}N - \pi Y; I = 0, 1\right)$ $V\left(\pi Y - \pi Y' ; I = 0, 1\right)$

Feshbach + ccCSM

 $\left|U_{K^{bar}N(I=0,1)}^{Eff}(E)\right|$

<u>Schrödinger eq. for K^{bar}NN channel :</u>

$$\left(T_{K^{bar}NN} + V_{NN} + \sum_{i=1,2} U_{K^{bar}N_{i}(I)}^{Eff}\left(E_{K^{bar}N}\right)\right) \Phi_{K^{bar}NN} = E \Phi_{K^{bar}NN}$$

Trial wave function

$$|"K^{-}pp"\rangle = \sum_{a} C_{a}^{(KNN,1)} \left\{ G_{a}^{(KNN,1)} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) + G_{a}^{(KNN,1)} \left(-\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) \right\} |S_{NN} = 0\rangle \left| \left[K [NN]_{1} \right]_{T=1/2} \right\rangle$$

$$+ \sum_{a} C_{a}^{(KNN,2)} \left\{ G_{a}^{(KNN,2)} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) - G_{a}^{(KNN,2)} \left(-\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) \right\} |S_{NN} = 0\rangle \left| \left[K [NN]_{0} \right]_{T=1/2} \right\rangle$$

$$Ch. 1: K^{bar}NN, NN:^{1}O$$

 <u>Basis function = Correlated Gaussian</u> ...including 3-types Jacobi-coordinates

$$G_{a}^{(KNN,i)}\left(\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right) = N_{a}^{(KNN,i)} \exp\left[-\left(\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right)A_{a}^{(KNN,i)}\left(\mathbf{x}_{1}^{(3)}\right)\right]$$

Three-body "K⁻pp" resonance on ccCSM+Feshbach projection

"K⁻pp" = $K^{bar}NN - \pi \Sigma N - \pi \Lambda N (J^{\pi} = 0^{-}, T = 1/2)$

Self-consistency for complex K^{bar}N energy

Effective K^{bar}N potential has energy dependence...

• $E(KN)_{In}$: assumed in the K^{bar}N potential

• *E*(*KN*)_{*Cal*} : calculated with the obtained *K*-*pp*

<u>When E(KN)_{In}=E(KN)_{Cal}.</u> a self-consistent solution is obtained.

Self-consistency for complex K^{bar}N energy

How to determine the two-body energy in the three-body system?

- 1. Kaon's binding energy: $B(K) \equiv -\left\{ \langle H \rangle \langle H_{NN} \rangle \right\}$
- H_{NN} : Hamiltonian of two nucleons

A. D., T. Hyodo, W. Weise, PRC79, 014003 (2009)

2. Define a K^{bar}N-bond energy in two ways

$$E_{KN} = M_N + \omega = \begin{cases} M_N + m_K - B(K) & : Field \\ M_N + m_K - B(K)/2 & : Parties$$

: Field picture : Particle picture

<u>Self-consistent results</u> <u>f_π=90~120MeV</u>

NN pot. : Av18 (Central) K^{bar}N pot. : NRv2c potential $(f_{\pi}=90 - 120MeV)$

Quasi self-consistent solution

NRv2c (f_{π} =110 *MeV*) <u>*Particle picture*</u>

Double-pole structure in "K-pp"?

✓ Quasi self-consistent solution is obtained ... (B(KNN), $\Gamma/2$) = (62 ~79, 74 ~104) MeV for f_{π} =90 ~120 MeV

with Particle picture

- Such solutions are not obtained with Field picture.
- <u>A Faddeev-AGS calc. has predicted the double-pole structure of "K-pp".</u>

Lower pole : $(B(KNN), \Gamma/2) = (67 \sim 89, 122 \sim 160) MeV$ Higher pole : $(B(KNN), \Gamma/2) = (9 \sim 16, 17 \sim 23) MeV$

Y. Ikeda, H. Kamano, and T. Sato, PTP 124, 533 (2010)

Relation to signals observed by J-PARC E27, DISTO?

Signal at ~100 MeV below K^{bar}NN thr.

<u>Lower pole of "K⁻pp" (J^{π}=0⁻, I=1/2)</u> ... "K⁻pp" has two poles similarly to Λ (1405). The lower pole appears.

Partial restoration of chiral symmetry ... K^{bar}N potential is enhanced by 17%. S. Maeda, Y. Akaishi, T. Yamazaki, Proc. Jpn. Acad., Ser. B 89, 418 (2013)

<u>Pion assisted dibaryon " $Y = \pi \Sigma N \cdot \pi \Lambda N (J^{\pi} = 2^+, I = 3/2)$ "</u>

A. Gal, arXiv:1412.0198 (Proceeding of EXA2014)

5. Summary

<u>A prototype of K^{bar} nuclei "K-pp" = Resonance state of $K^{bar}NN-\pi YN$ coupled system</u>

<u>"coupled-channel Complex Scaling Method + Feshbach projection"</u>

- ... Represent the Q-space Green function with the Extended Complete Set well approximated by Gaussian base
- ⇒ Eliminate πY channels to reduce the problem to a K^{bar}NN single channel problem.

K-pp studied with ccCSM+Feshbch method

- Used a Chiral SU(3)-based potential (Gaussian form in r-space)
- Self-consistency for K^{bar}N complex energy (Field and Particle pictures)

<u>K⁻pp (J^π=0⁻, T=1/2)</u> (B, Γ/2) ÷ (20~30, 10~30) MeV

- Quasi self-consistent solution in case of Particle picture
 - ... Deeper binding and larger decay width

<u>K-pp $(J^{\pi}=0^{-}, T=1/2)$ $(B, \Gamma/2) \doteq (60 \sim 80, 75 \sim 105)$ MeV</u>

"K-pp" has a double-pole structure similarly to $\Lambda(1405)$?

• Relation to the K⁻pp search experiments

The signal observed in J-PARC E27 is considered to correspond to the lower pole of "K-pp"?? J-PARC E15 may pick up the higher pole of "K-pp"??

5. Future plans

Thank you for your attention!

References:

P

K

 A. D., T. Inoue, T. Myo, NPA 912, 66 (2013)
 A. D., T. Myo, NPA 930, 86 (2014)
 A. D., T. Inoue, T. Myo, PTEP 2015, 043D02 (2015)

Cats in KEK