Establishing mass spectrum of S=-1 hyperon resonances via a dynamical coupled-channels analysis of K[·] p reactions

> Hiroyuki Kamano (RCNP, Osaka U.)

In collaboration with T.-S. H. Lee (Argonne), S. Nakamura (Osaka U.), T. Sato (Osaka U.)

[HK, Nakamura, Lee, Sato, PRC90(2014)065204; PRC92(2015)025205]

HYP2015, Tohoku University, Sendai, Japan, September 7-12, 2015

Current situation of $Y^*(= \Lambda^*, \Sigma^*)$ spectroscopy

PDG listing

✓	Y [*] (= Λ^* , Σ [*]) resonances are much
	less understood than N* & Δ^* .

For example:

- Even low-lying resonances are not well determined.
 - N* & Δ* spectra are very well established up to M_R < ~ 1.8 GeV.</p>
- Before 2012, PDG listed only Breit-Wigner (BW) mass and width. (+ "highly" model-dependent !!)

N* & Δ* case: Resonances defined by poles of scattering amplitudes are extensively studied; PDG lists BOTH pole and BW parameters.

NOTE: Pole parameters should be "model-independent".

		Λ*			Σ*	
Λ(13XX)1/2 ⁻ ??	Particle	J^P	Overall status	Particle	J^P	Overall status
	$\frac{\Lambda(1116)}{\Lambda(1405)}$	$\frac{1/2+}{1/2-}$	**** ****	$\frac{\Sigma(1193)}{\Sigma(1385)}$	$\frac{1/2+}{3/2+}$	**** ****
above KN threshold	$\Lambda(1520) \ \Lambda(1600) \ \Lambda(1670) \ \Lambda(1690)$	3/2 - 1/2 + 1/2 - 3/2 -	**** *** **** ****	$ \frac{\overline{\Sigma}(1480)}{\Sigma(1560)} $ $ \frac{\Sigma(1580)}{\Sigma(1580)} $	$3/2 \frac{1}{1/2}$	***
letermined.	$\begin{array}{c} \Lambda(1800) \\ \Lambda(1800) \\ \Lambda(1810) \end{array}$	1/2 - 1/2 +	***	$\Sigma(1660) \\ \Sigma(1670)$	1/2+ 3/2-	*** ****
ished	$ \begin{array}{c} \Lambda(1820) \\ \Lambda(1830) \end{array} $	5/2+ 5/2-	**** ****	$\Sigma(1690) \\ \Sigma(1750) \\ \Sigma(1770)$	1/2- 1/2+	** ***
	$\Lambda(1890) = \Lambda(2000) = \Lambda(2020)$	3/2+ 7/2+	**** * *	$\frac{\Sigma(1775)}{\Sigma(1840)}$	5/2- 3/2+	**** *
er (BW) andent II)	$\begin{array}{c} \Lambda(2100) \\ \Lambda(2110) \end{array}$	7/2-5/2+	**** ***	$\Sigma(1880) \\ \Sigma(1915) \\ \Sigma(1940)$	1/2+ 5/2+ 3/2-	** **** ***
	$\begin{array}{c} \Lambda(2325) \\ \Lambda(2350) \\ \Lambda(2585) \end{array}$	3/2-	* ***	$\Sigma(2000) \\ \Sigma(2030)$	1/2 - 7/2 +	* ****
attering	<u>A(2383)</u>		**	$\Sigma(2070) \\ \Sigma(2080) \\ \Sigma(2100)$	5/2+ 3/2+ 7/2-	* **
neters.				$\Sigma(2250) \\ \Sigma(2250) \\ \Sigma(2455)$	1/2	~ *** **
dependent".				$\Sigma(2620) \\ \Sigma(3000) \\ \Sigma(3170)$		** * *

Current situation of $Y^*(= \Lambda^*, \Sigma^*)$ spectroscopy

PDG listing

Dynamical Coupled-Channels (DCC) approach to Λ* & Σ* productions

Dynamical Coupled-Channels (DCC) model:

[HK, Nakamura, Lee, Sato, PRC90(2014)065204]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} q^{2} dq V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$a, b, c = (\bar{K}N, \pi\Sigma, \pi\Lambda, \eta\Lambda, K\Xi, [\pi\Sigma^{*}, \bar{K}^{*}N,] \cdots)$$
quasi two-body channels of
three-body mmA & mKN
Summing up all possible transitions between reaction channels !!
(\Rightarrow satisfies multichannel two- and *three*-body unitarity)
e.g.) $\bar{K}N$ scattering
$$\bar{K} = \bigvee_{N} + \bigvee_{\Sigma} + \bigvee_{\Sigma} + \bigvee_{\Sigma} + \bigvee_{\Sigma} + \bigvee_{\Sigma} + \cdots$$

 Momentum integral takes into account off-shell rescattering effects in the intermediate processes.

What we have done so far

With the DCC approach developed for the S= -1 sector, we made:

✓ Comprehensive analysis of ALL available data (more than 17,000 data points) of
 K⁻ p → KN, πΣ, πΛ, ηΛ, KΞ up to W = 2.1 GeV. [HK, Nakamura, Lee, Sato, PRC90(2014)065204]

 ✓ Determination of threshold parameters (scattering lengths, effective ranges,...); the partial-wave amplitudes of KN → KN, πΣ, πΛ, ηΛ, KΞ for S, P, D, and F waves. [HK, Nakamura, Lee, Sato, PRC90(2014)065204]

Extraction of Y* =(Λ*, Σ*) resonance parameters (mass, width, couplings, ...) defined by poles of scattering amplitudes.
 [HK, Nakamura, Lee, Sato, PRC92(2015)025205]

Results of the fits

Results of the fits

$K^- p \rightarrow K^- p$ scattering

HK, Nakamura, Lee, Sato, PRC90(2014)065204

cosθ

dσ/dΩ (1832 < W < 2100 MeV)

P (1730 < W < 2080 MeV)

Comparison of extracted partial-wave amplitudes

Comparison of extracted partial-wave amplitudes

Comparison of extracted partial-wave amplitudes

Extracted Λ* and Σ* mass spectrum

Spectrum for Y* resonances found above the KN threshold

Red: Model A Blue: Model B

Green: KSU

Black: PDG (only 4- & 3-star Y*;

Breit-Wigner)

HK, Nakamura, Lee, Sato, PRC92(2015)025205

Extracted Λ* and Σ* mass spectrum

Spectrum for Y* resonances found above the KN threshold

HK, Nakamura, Lee, Sato, PRC92(2015)025205

Extracted Λ* and Σ* mass spectrum

Extracted Λ^* and Σ^* mass spectrum

Spectrum for Y* resonances found above the KN threshold

Red: Model A **Blue: Model B**

Green: KSU

pole mass

Re(M_P)

HK, Nakamura, Lee, Sato, PRC92(2015)025205

Summary

- ✓ Comprehensive analysis of K⁻ p → KN, πΣ, πΛ, ηΛ, KΞ up to W = 2.1 GeV has been accomplished for the first time within a dynamical coupled-channels approach.
- Partial-wave (S, P, D, and F) amplitudes &
 Λ* and Σ* resonance parameters (pole mass, width,...)
 have been successfully extracted.

Visible analysis dependence exits in extracted resonance parameters

Lack of the K- p reaction data for

polarization observables (P and β , R, A) the $\overline{K}N$ threshold region 3-body ($\pi\pi\Lambda$, $\pi\overline{K}N$, ...) production reaction

J-PARC is a **unique facility** to overcome this unsatisfactory situation !!

Back up

S-wave resonances below KN threshold from the current analysis

HK, Nakamura, Lee, Sato, PRC92(2015)025205

NOTE: Further extensive analysis including the data below \overline{KN} threshold is necessary to have *conclusive* results for the \overline{KN} subthreshold region.

S-wave resonances below KN threshold from the current analysis

HK, Nakamura, Lee, Sato, PRC92(2015)025205

NOTE: Further extensive analysis including the data below KN threshold is necessary to have *conclusive* results for the KN subthreshold region.

Importance of 2 \rightarrow 3 reactions: Branching ratio high-mass Y* resonances

High-mass Y* have large branching ratio to $\pi\Sigma^*$ ($\pi\pi\Lambda$) & \overline{K}^*N ($\pi\overline{K}N$)

- > K⁻ p $\rightarrow \pi\pi\Lambda$, πKN data would play a crucial role for establishing high-mass Y*.
 - → Similar to high-mass N* and Δ * case, where $\pi\pi$ N channel plays a crucial role. (e.g., measurement of π N → $\pi\pi$ N reactions at J-PARC E45)

HK, Nakamura, Lee, Sato, PRC92(2015)025205

S-wave dominance ??

$K^- p \rightarrow MB$ total cross sections near threshold

Solid: Full Dashed: S wave only

For K- $p \rightarrow \pi\Lambda$, $\eta\Lambda$, K \equiv , higher partial waves visibly contribute to the cross sections even in the threshold region.

→ consistent with the observation in Jackson et al., PRC91(2015)065208

Naïve expectation for S-wave dominance near the threshold sometimes does not hold !!

How we study the region below the KN threshold ?

E.g.) $\gamma p \rightarrow K^+\pi\Sigma$ @CLAS

At the CLAS energy, many production processes contribute and sizably affect mass distributions as backgrounds.

Forward $p(\pi, K^*)X$ reactions with high-momentum pion beam (\rightarrow J-PARC E50)

For forward K* (small t), the processes are dominated by diffractive t-channel exchange processes.

- We DO have fully unitarized KN→ MB and K*N → MB half off-shell amplitudes !!
- > 12 GeV JLab can do a similar measurement by replacing incident π by high-energy photon.
- Useful also for determining low-lying Σ* resonances

Our strategy for light-quark baryon spectroscopy

1) Construct a model by making χ^2 -fit of the world data of meson production reactions:

- Partial-wave amplitudes, scattering length,... etc. are extracted.
- Use supercomputers to accomplish coupled-channels analyses:

2) Search poles of determined scattering amplitudes by making analytic continuation to a complex energy plane.

3) Extract resonance parameters defined by poles.

Pole position \rightarrow (complex) resonance mass Residues \rightarrow coupling strengths between Y* and MB

D35

Future works

✓ Extension of our analysis: tackling on $\Lambda(1405)$ as well as low-lying Σ* resonances

J-PARC E31

Forward $p(\pi, K^*)X$ reactions with high-momentum pion beam (\rightarrow J-PARC E50)

(Processes are expected to be dominated by diffractive t-channel exchange processes.)

Studying YY interactions

Extracted scattering lengths and effective ranges

HK, Nakamura, Lee, Sato, PRC90(2014)065204

	Mod	lel A	Mod	Model B		
	I = 0	I = 1	I = 0	I = 1		
$a_{\bar{K}N}$ (fm)	-1.37 + i0.67	0.07 + i0.81	-1.62 + i1.02	0.33 + i0.49		
$a_{\eta\Lambda}$ (fm)	1.35 + i0.36	-	0.97 + i0.51	-		
$a_{K\Xi}$ (fm)	-0.81 + i0.14	-0.68 + i0.09	-0.89 + i0.13	-0.83 + i0.03		
$r_{\bar{K}N}$ (fm)	0.67 - i0.25	1.01 - i0.20	0.74 - i0.25	-1.03 + i0.19		
$r_{\eta\Lambda}$ (fm)	-5.67 - i2.24	-	-5.82 - i3.32	-		
$r_{K\Xi}$ (fm)	-0.01 - i0.33	-0.42 - i0.49	0.13 - i0.20	-0.22 - i0.11		

Scattering length and effective range

 $a_{K-p} = -0.65 + i0.74$ fm (Model A) $a_{K-p} = -0.65 + i0.76$ fm (Model B)

Database of our analysis (W < 2.1GeV)

HK, Nakamura, Lee, Sato, PRC90(2014)065204

Predicted spin-rotation angle β

HK, Nakamura, Lee, Sato, PRC90(2014)065204

W = 1500 MeVW = 1700 MeVW = 1900 MeV W = 2100 MeV $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ β (rad) $K^{-}p \rightarrow K^{-}p$ 0 0 $-\pi/2$ $-\pi/2$ $-\pi/2$ $-\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ β (rad) $K^{-}p \rightarrow K^{0}n$ 0 0 $-\pi/2$ $-\pi/2$ $-\pi/2$ $-\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ β (rad) $K^{-}p \ \rightarrow \ \pi^{-}\Sigma^{+}$ 0 0 0 $-\pi/2$ $-\pi/2$ $-\pi/2$ $-\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ β(rad) $K^{-}p \ \longrightarrow \ \pi^{0} \ \Sigma^{0}$ 0 0 0 $-\pi/2$ $-\pi/2$ $-\pi/2$ $-\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ β (rad) $K^{-}p \ \rightarrow \ \pi^{+} \Sigma^{-}$ 0 0 0 0 $-\pi/2$ $-\pi/2$ $-\pi/2$ $-\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ β (rad) $K^{-}p \rightarrow \pi^{0} \Lambda$ 0 0 0 $-\pi/2$ $-\pi/2$ $-\pi/2$ $-\pi/2$ 0 0 0 0 -1 1 -1 -1 1 -1 cosθ cosθ cosθ cosθ

Analysis dependence is clearly seen !!

Measurement of β will give strong constraints on Y* spectrum !!

> Red: Model A Blue: Model B Black: KSU

The KSU results are computed by us using their amplitudes in PRC88(2013)035204.

NOTE: β is modulo 2π