$\Xi(1690)$ as a $\overline{K}\Sigma$ molecular state

Takayasu SEKIHARA

(RCNP, Osaka Univ.)

- 1. Introduction
- 2. Formulation
- 3. Results and discussions

4. Summary

[1] <u>T. S.</u>, Prog. *Theor. Exp. Phys. Letters*, in press [arXiv:1505.02849 [hep-ph]].

HYP2015 @ Tohoku, Japan (Sep. 7 - 12, 2015)

++ Ξ(1690) as an exotic hadron ? ++ Exotic hadrons --- not same quark component as ordinary hadrons

= not qqq nor $q\overline{q}$. <-- Do exotic hadrons really exist ???

The E(1690) resonance may be an exotic hadron.

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

 $I(J^{P}) = \frac{1}{2}(?^{?})$ Status: ***

AUBERT 08AK, in a study of $\Lambda_c^+ \rightarrow \Xi^- \pi^+ K^+$, finds some evidence that the $\Xi(1690)$ has $J^P = 1/2^-$.

DIONISI 78 sees a threshold enhancement in both the neutral and negatively charged $\Sigma \overline{K}$ mass spectra in $K^- p \rightarrow (\Sigma \overline{K}) K \pi$ at 4.2 GeV/c. The data from the $\Sigma \overline{K}$ channels alone cannot distinguish between a resonance and a large scattering length. Weaker evidence at the same mass is seen in the corresponding $\Lambda \overline{K}$ channels, and a coupled-channel analysis yields results consistent with a new Ξ .

BIAGI 81 sees an enhancement at 1700 MeV in the diffractively

 Mass: 1690 ± 10 MeV.
 Width: < 30 MeV, but a relatively narrow width has been reported.

2

Particle Data Group.

, 2015)

++ Experiments of the Ξ(1690) resonance ++
Historically Ξ(1690) was discovered as a threshold enhancement in both the neutral and charged KΣ mass spectra in the K⁻⁻ p --> (KΣ) K π reaction at 4.2 GeV/c.

HYP2015 @ Tohoku, Japan (Sep. 7 - 12, 2015)

 ++ Experiments of the Ξ(1690) resonance ++
 Ξ(1690) has been <u>observed and investigated in several</u> <u>experiments</u>.

• Especially small total decay width and tiny branching fraction to the $\pi \Xi$ state have been reported, for instance:

 $\Gamma=10\pm 6~{\rm MeV}$

M. I. Adamovich *et al.* [WA89 Collab.], *Eur. Phys. J.* <u>C5</u> (1998) 621. Particle Data Group.

 $\Gamma(\pi \Xi) / \Gamma(\bar{K}\Sigma) < 0.09$

or

- However, the small decay width and tiny BR fraction to $\pi \Xi$ bring a difficulty, assuming $J^p = 1/2^{-1}$ for $\Xi(1690)$.
- --- Naive quark models inevitably predict decay to $\pi \Xi$ to some extent
- --> $\Xi(1690)$ might have a non-trivial structure than usual qqq state ?

++ Theories of the $\Xi(1690)$ resonance ++

 Ξ(1690) and other Ξ* resonances has been investigated in several theoretical frameworks as well, for instance:

Quark models.

K. T. Chao, N. Isgur and G. Karl, Phys. Rev. D23 (1981) 155;

S. Capstick and N. Isgur, *Phys. Rev.* <u>D34</u> (1986) 2809;

M. Pervin and W. Roberts, *Phys. Rev.* <u>C77</u> (2008) 025202;

L. Y. Xiao and X. H. Zhong, Phys. Rev. <u>D87</u> (2013) 094002;

N. Sharma, A. Martinez Torres, K. P. Khemchandani and H. Dahiya, Eur. Phys. J. A49 (2013) 11;

Skyrme model.

Y. Oh, Phys. Rev. <u>D75</u> (2007) 074002.

Chiral unitary approach.

A. Ramos, E. Oset and C. Bennhold, Phys. Rev. Lett. 89 (2002) 252001;

C. Garcia-Recio, M. F. M. Lutz and J. Nieves, Phys. Lett. <u>B582</u> (2004) 49;

D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, Phys. Rev. <u>D84</u> (2011) 056017.

...

++ Ξ^* resonances in chiral unitary approach ++

= \(\mathbf{\Sigma} * resonances in chiral unitary approach.\)

--- Based on the combination of the chiral perturbation theory and the unitarization of the scattering amplitude.

$(\frac{1}{2}, -2)$		$[\pi \Xi] 7.5$	5.6	seen	2.6	- Svetomatic studios
Ξ(1620)*		[KA] 5.2	2.8	seen	-1.5	- Systematic studies
$M \approx 1620$	1565	[KΣ] 0.7	2.6	0	-0.8	were done for several Ξ^*
$\Gamma = 23$	247	$[\eta \Xi] 0.3$	4.9	0	0.3	states together with
$(\frac{1}{2}, -2)$		$[\pi \Xi] 0.02$	0.1	seen	-0.1	many other resonances
Ξ(1690)***		[KA] 0.16	6.0	seen	0.9	many other resonances.
$M = 1690 \pm 10$	1663	[KΣ] 5.15	3.1	seen	-2.5	C. Garcia-Recio, M. F. M. Lutz and J. Nieves,
$\Gamma = 10 \pm 6$	4	[ηΞ] 2.28	3.2	0	-1.7	<i>Phys. Lett.</i> <u>B582</u> (2004) 49.

8 (1134)	2037–24i	0.6	0.6	0.3	0.2	0.3	† 0.5	1.5	0.6	1.8	2.4	1.1	0.2	1.0	2.1		[
10 (70)	1729–46i	0.6	1.4	0.4	† 1.6	1.4	2.1	1.0	0.4	3.3	1.5	0.4	0.2	1.6	1.0	Ξ(1950) ★ ★ ★	
8 (70)	1651–2i	0.2	0.3	† 2.2	1.3	1.0	2.6	0.2	0.6	0.9	0.4	0.2	1.7	0.4	0.2	Ξ(1690) ★★★	
8 (56)	1577–139i	2.6	† 1.7	0.5	0.1	0.8	1.0	0.7	0.1	0.6	1.3	0.3	0.1	0.2	1.2	≡(1620) ★	

-- <u>Narrow width</u> for $\Xi(1690)$! But its mass is lower than Exp. value.

D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, Phys. Rev. <u>D84</u> (2011) 056017.

++ In this study ... ++

- In this study we concentrate on the phenomena near the $\overline{K}\Sigma$ threshold and on the $\Xi(1690)$ resonance.
- By using the chiral unitary approach and adjusting parameters, we show the narrow $\Xi(1690)$ state, which was studied in the previous studies, can exist near the $\overline{K}\Sigma$ threshold with $J^P = 1/2^{--}$, and it reproduces experimental mass spectra qualitatively well.
- We investigate and clarify properties of the Ξ(1690) state, including its small decay width, molecular structure, etc.
 We especially show that the Ξ(1690) resonance can be indeed an *s*-wave KΣ molecular state in terms of the <u>compositeness</u>.

Hyodo-Jido-Hosaka (2012), Aceti-Oset (2012), Nagahiro-Hosaka (2014), See Hyodo, *Int. J. Mod. Phys.* <u>A28</u> (2013) 1330045; also <u>T. S.</u>, Hyodo and Jido, *PTEP* (2015) 063D04.

2. Formulation

++ Chiral unitary approach ++

• We employ the chiral unitary approach for the <u>s-wave $\overline{K}\Sigma - \overline{K}\Lambda - \pi \Xi - \eta \Xi$ </u> coupled-channels scattering.

$$T_{jk}(w) = V_{jk}(w) + \sum_{j} V_{jl}(w)G_l(w)T_{lk}(w)$$

--- The chiral unitary approach is most successful in the *K*N interaction and Λ(1405). Kaiser-Siegel-Weise (1995), Oset-Ramos (1998), Oller-Meissner (2001), Lutz-Kolomeitsev (2002),

Jido et al. (2003),

 In this study we use the Weinberg-Tomozawa interaction for the interaction kernel V.
 <u>The leading order term of ChPT</u> in s wave:

 $V_{jk}(w) = -rac{C_{jk}}{4f_j f_k} (2w - M_j - M_k) \sqrt{rac{E_j + M_j}{2M_j}} \sqrt{rac{E_k + M_k}{2M_k}}$

Hyodo and Jido (2012).

<-- We have no free parameters in the interaction kernel.

2. Formulation

++ Chiral unitary approach ++

For the loop function G we take a covariant expression:

$$G_j(w) = i \int rac{d^4 q}{(2\pi)^4} rac{1}{(P/2+q)^2 - m_j^2 + i0} rac{2M_j}{(P/2-q)^2 - M_j^2 + i0}$$

- The integral is calculated with the dimensional regularization, and an infinite constant is replaced with <u>a subtraction constant</u> in each channel.
- --> Subtraction constants are free parameters.
- We assume the isospin symmetry for the subtraction constants, so we have 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$), which are fixed so

as to reproduce the mass spectra by Belle. --- Neutral E(1690).

K. Abe et al. [Belle Collab.], Phys. Lett. <u>B524</u> (2002) 33.

RCNP

++ Fitting to the Belle data ++

• We fix 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$) so as to

reproduce the mass spectra by Belle. The result of the best fit is:

Background of the Belle data is subtracted.

□ Relative scale between $\overline{K^0}\Lambda$ and $\overline{K^0}\Sigma^+$ is fixed with the branching fractions: $\mathbb{R}[\Lambda^+, \nabla^+](K^+) = (K^-\Sigma^+)K^+] = (1, 2, -0, 5) \times 10^{-3}$

$$\mathcal{B}[\Lambda_c^+ \to \Xi(1690)^0 K^+ \to (K^- \Sigma^+) K^+] = (1.3 \pm 0.5) \times 10^{-3}$$

$$\mathcal{B}[\Lambda_c^+ \to \Xi(1690)^0 K^+ \to (\bar{K}^0 \Lambda) K^+] = (8.1 \pm 3.0) \times 10^{-4}$$

++ Fitting to the Belle data ++

• We fix 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$) so as to

reproduce the mass spectra by Belle. The result of the best fit is:

 The Belle data on Ξ(1690) are reproduced qualitatively well with very small width ~1 MeV.

--- We can calculate the ratio $R \equiv \frac{\mathcal{B}[\Lambda_c^+ \to \Xi(1690)^0 K^+ \to (K^- \Sigma^+) K^+]}{\mathcal{B}[\Lambda_c^+ \to \Xi(1690)^0 K^+ \to (\bar{K}^0 \Lambda) K^+]}$

$$R_{\rm th} = 1.06 \iff R_{\rm exp} = 0.62 \pm 0.33.$$
 --- $\ln 2\sigma$ errors

HYP2015 @ Tohoku, Japan (Sep. 7 - 12, 2015)

++ Fitting to the Belle data ++

• We fix 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$) so as to

reproduce the mass spectra by Belle. The result of the best fit is:

1. The Belle data on $\Xi(1690)$ are reproduced qualitatively well.

- 2. Subtraction constants are "natural" (except for $a_{\pi\Xi}$), as the values of the corresponding three-dimensional cut-off at the threshold, Λ_{th} , is about 500 1500 MeV.
- ---- The $\pi \Xi$ channel negligibly contributes to $\Xi(1690)$.

++ Fitting to the Belle data ++

• We fix 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$) so as to

reproduce the mass spectra by Belle. The result of the best fit is:

1. The Belle data on $\Xi(1690)$ are reproduced qualitatively well.

2. Subtraction constants are "natural" (except for $a_{\pi\Xi}$).

RCNP

The Ξ(1690) pole is dynamically generated at 1684.3 -- 0.5 *i* MeV, whose real part is between the K-- Σ+ and the K 20 thresholds.
 This pole exists in the first Riemann sheet of both K Σ channels.

++ Origin of **E**(1690) ++

- We naively expect that the Ξ(1690)⁰ (pole at 1684.0 -- 0.6 *i* MeV) would originate from the KΣ(I=1/2) bound state generated by the strongly attractive interaction between KΣ(I=1/2).
- --- *cf.* The strongly attractive $\overline{KN}(I=0)$ interaction for $\Lambda(1405)$.
- However, the chiral KΣ(I=1/2) interaction is attractive but not strong enough to generate a bound state in a single channel case.
 In contrast to the KN(I=0) Int., which can solely generate a bound state for Λ(1405).

C_{jk}	$\bar{K}\Sigma$	$\bar{K}\Lambda$	$\pi \Xi$	$\eta \Xi$
$\bar{K}\Sigma$	2	0	-1/2	3/2
$\bar{K}\Lambda$	0	0	-3/2	-3/2
$\pi \Xi$	-1/2	-3/2	2	0
$\eta\Xi$	3/2	-3/2	0	0

• This fact implies that <u>the multiple</u> <u>scatterings</u>, such as $\overline{K}\Sigma \rightarrow \eta\Xi \rightarrow \overline{K}\Sigma$, <u>assist the $\overline{K}\Sigma$ interaction</u> for $\Xi(1690)$.

++ Small decay width ++

In addition, the structure of the interaction strength qualitatively explains a remarkable property of $\Xi(1690)^0$, its very small width:

 C_{ik}

 $\bar{K}\Sigma$

 $\bar{K}\Lambda$

 $\pi \Xi$

 $\eta \Xi$

 $\bar{K}\Sigma$

2

0

-1/2

3/2

 $\bar{K}\Lambda$

0

0

-3/2

-3/2

 $\bar{K}N$

3

 $-\sqrt{3/2}$

Cik

 $\bar{K}N$

 $\pi\Sigma$

 $\eta \Lambda$

 $\pi \Xi$

-1/2

-3/2

 $\mathbf{2}$

0

(I = 1/2, isospin basis)

 $\pi\Sigma$

 $-\sqrt{3/2}$

 $\eta \Lambda$

 $3/\sqrt{2}$

0

 $\eta \Xi$

3/2

-3/2

0

0

 $K\Xi$

0

 $\sqrt{3/2}$

- $\Gamma = -2 \operatorname{Im}(w_{\text{pole}}) \sim 1 \operatorname{MeV}.$
- **1. Transition of K\Sigma < --> K\Lambda is** forbidden at the leading order $(C_{ik} = 0)$, so the $\overline{K\Sigma} \rightarrow \overline{K\Lambda} \rightarrow \overline{K\Sigma}$ multiple process gives zero.
- 2. <u>*K*</u> $\Sigma < --> \pi \Xi$ is not strong compared to, *e.g.*, $\overline{KN}(I=0) < --> \pi \Sigma$.
- ---- $C_{ik} = --0.5$ vs. -- $\sqrt{1.5} = --1.22$
- 3. $K\Sigma < \rightarrow \eta \Xi$ is the strongest.
- $-3/\sqrt{2}$ $3/\sqrt{2}$ --> As a consequence, the $\eta \Xi$ channel is $\sqrt{3/2}$ $-3/\sqrt{2}$ $K\Xi$ 0 3 most important in the multiple scatterings for $K\Sigma$ to dynamically generate $\Xi(1690)$ which cannot couple strongly to $\overline{K\Lambda}$ nor $\pi\Xi$. This reproduces small decay width and tiny BR fraction to $\pi \Xi$. ---

++ Compositeness for $\Xi(1690)$ ++

- Our E(1690) pole exists at 1684.3 -- 0.5 i MeV, whose real part is
 - very close to the $K^{--} \Sigma^+$ threshold (= 1863.1 MeV).
- --- The pole exists in the first Riemann sheet of the $K^{--} \Sigma^+$ channel. \Box <u>"Theorem" (single channel, *s* wave)</u>:
 - The bound state with the field renormalization const. Z ~ 0
naturally appears when the state exists near the threshold, and
especially Z vanishes in the limit B --> 0.T. Hyodo (2014);
C. Hanhart, J. R. Pelaez
and G. Rios, (2014).
 - Therefore, we expect that our $\Xi(1690)$ state should be genuinely $\overline{K}\Sigma$ composite ! (coupled-channels version)
 - Indeed, the result of the compositeness X strongly indicates that Ξ(1690) is a KΣ molecular state.

 $\langle \Psi^* | \Psi \rangle = \sum_j X_j + Z = 1$ Hyodo (2013); <u>T. S.</u>, Hyodo and Jido (2015). $X_j = -g_j^2 \left[\frac{dG_j}{dw} \right]_{w=w_{\text{pole}}}, \quad Z = -\sum_{i,k} g_k g_j \left[G_j \frac{dV_{jk}}{dw} G_k \right]_{w=w_{\text{pole}}}$

$X_{K^-\Sigma^+}$	0.84 - 0.27i
$X_{ar{K}^0\Sigma^0}$	0.11+0.15i
$X_{ar{K}^0\Lambda}$	-0.01 + 0.01i
$X_{\pi^+\Xi^-}$	0.00 + 0.00i
$X_{\pi^0 \Xi^0}$	0.00 + 0.00i
$X_{\eta \Xi^0}$	0.01 + 0.02i
Z^{\uparrow}	0.06 + 0.09i

4. Summary

++ Summary ++

- We have investigated dynamics of $\overline{K\Sigma}$ and its coupled channels in the chiral unitary approach.
 - We employ the simplest interaction: Weinberg-Tomozawa term.
 - Subtraction constants as free parameters are fixed by fitting the $\overline{K^0}\Lambda$ and $\overline{K^-\Sigma^+}$ mass spectra to the experimental data.
- As a result, we have found that:
 - The obtained scattering amplitude can <u>qualitatively reproduce</u> the experimental data of the $\overline{K^0}\Lambda$ and $K^-\Sigma^+$ mass spectra.
 - Dynamically generates a Ξ^* pole near the $\overline{K}\Sigma$ threshold as a $\overline{K}\Sigma$ molecule, which can be identified with the $\Xi(1690)^0$ resonance.
 - However, the $\overline{K\Sigma}$ interaction alone is slightly insufficient to bring a $\overline{K\Sigma}$ bound state, so multiple scattering is important for $\Xi(1690)$.
 - The small or vanishing couplings of the $\overline{K}\Sigma$ channel to others can <u>naturally explain small decay width of $\Xi(1690)$ </u>.

Thank you very much for your kind attention !

++ Comparison with previous ChUA calculations ++
 The discussion on the K∑ interaction can be further utilized for comparison of our result on Ξ(1690) (pole at 1684.3 -- 0.5 i MeV) with previous ones in chiral unitary approach.

$(\frac{1}{2}, -2)$		[πΞ] 7.5	5.6	seen	2.6	<> Qualitatively similar, but
$\Xi(1620)^*$		[KA] 5.2	2.8	seen	-1.5	the mass (= real part of
$M \approx 1620$	1565	$[\bar{K}\Sigma] 0.7$	2.6	0	-0.8	the pole position) of our
$\Gamma = 23$	247	[ηΞ] 0.3	4.9	0	0.3	result is 20 - 30 MeV
$(\frac{1}{2}, -2)$		$[\pi \Xi] 0.02$	0.1	seen	-0.1	lorger than others
$\Xi(1690)^{***}$		[KA] 0.16	6.0	seen	0.9	larger man others.
$M = 1690 \pm 10$	1663	[KΣ] 5.15	3.1	seen	-2.5	C. Garcia-Recio, M. F. M. Lutz and J. Nieves,
$\Gamma = 10 \pm 6$	4	$[\eta \Xi] 2.28$	3.2	0	-1.7	Phys. Lett. <u>B582</u> (2004) 49.

8 (1134)	2037-24i	0.6	0.6	0.3	0.2	0.3	1 0.5	1.5	0.6	1.8	2.4	1.1	0.2	1.0	2.1	
10 (70)	1729–46i	0.6	1.4	0.4	† 1.6	1.4	2.1	1.0	0.4	3.3	1.5	0.4	0.2	1.6	1.0	至(1950) ***
8 (70)	1651–2i	0.2	0.3	† 2.2	1.3	1.0	2.6	0.2	0.6	0.9	0.4	0.2	1.7	0.4	0.2	Ξ(1690) ★★★
8 (56)	1577–139i	2.6	† 1.7	0.5	0.1	0.8	1.0	0.7	0.1	0.6	1.3	0.3	0.1	0.2	1.2	≡(1620) ★

D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, Phys. Rev. <u>D84</u> (2011) 056017.

HYP2015 @ Tohoku, Japan (Sep. 7 - 12, 2015)

++ Comparison with previous ChUA calculations ++
 The discussion on the K∑ interaction can be further utilized for comparison of our result on Ξ(1690) (pole at 1684.3 -- 0.5 i MeV) with previous ones in chiral unitary approach.

 In Ref. [1] they used the meson decay constant <u>f = 90 MeV in</u> <u>all channels</u>, while we use their physical values (f_K = 110.64 MeV).
 --> The Ξ(1690) pole moves as:

□ In Ref. [2] they introduced channels with vector mesons, which would assist more the $\overline{K}\Sigma$ interaction, and hence the mass of $\Xi(1690)$ shifted to lower energies.

[1] C. Garcia-Recio, M. F. M. Lutz and J. Nieves, *Phys. Lett.* <u>B582</u> (2004) 49.

[2] D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, Phys. Rev. <u>D84</u> (2011) 056017.

RCNP

++ Charged E(1690) ++

Finally we consider the charged Ξ(1690) in the same parameter set as the neutral one. As a result, we obtain the Ξ(1690)⁻⁻ pole as:

$w_{ m pole}$	$1693.4-10.5i~{\rm MeV}$	□ The Ξ(1690) pole is located between
$X_{ar{K}^0\Sigma^-}$	0.86-0.50i	the $K^{-}\Sigma^0$ and $\overline{K}^0\Sigma^{-}$ thresholds;
$X_{K^-\Sigma^0}$	-0.27 + 0.31i	The pole is in the first Riemann sheet
$X_{K^-\Lambda}$	-0.02 + 0.04i 0.00 + 0.00i	of the $\overline{K}^0\Sigma^{-1}$ and $\eta\Xi^{-1}$ channels and
$X_{\pi^0\Xi^-}$	0.00 + 0.00i 0.00 + 0.00i	in the second Riemann sheet of the
$X_{\eta \Xi^-}$	0.07 + 0.03i	$K^{-1}\Lambda$. $K^{-1}\Sigma^{0}$. $\pi^{-1}\Xi^{0}$. and $\pi^{0}\Xi^{-1}$ channels.
Z^{\uparrow}	0.36 + 0.12i	

□ The pole position has a larger imaginary part ~ 10 MeV compared to the neutral case, since it exists above the $\overline{K^0}\Sigma^-$ threshold in its second Riemann sheet and hence the decay to $\overline{K^0}\Sigma^-$ is allowed.

□ Although both $X_{K^0\Sigma}$ - and $X_{K-\Sigma^0}$ have large imaginary part, sum of them is the dominant contribution with its small imaginary part, which implies that the $\Xi(1690)^{-1}$ state is also a $\overline{K\Sigma}$ molecular state.

++ Outlook ++

Theoretical study:

- Propose reactions which can <u>clarify properties</u> of the Ξ(1690) resonance in experiments, both neutral and charged states.
- $\Box \frac{Predict the \Xi(1690) production cross section.}{}$
- Improvement of model by, e.g., introducing s- and u-channel Born terms.
- Experimental study:
 - Determine J^P of the $\Xi(1690)^0$ resonance.
 - Measure the $\overline{K}\Lambda$ and $\overline{K}\Sigma$ mass spectra and ratio of their branching fractions.
 - Furthermore, precise determination of its pole position should be important to discuss the internal structure of Ξ(1690).
 Flatte parameterization may be necessary since it exists near the KΣ threshold.

