Searching for detectable effects induced by anomalous threshold triangle singularity

Xiao-Hai Liu

Tokyo Institute of Technology

For HYP2015, Tohoku Uni., Sendai, 2015.09.08

Outline

- **Earlier study**
- >Anomalous triangle singularity (ATS)
- Promising processes to detect ATS
- Searching for charmoniumlike states with hidden ssbar
- Production of the pentaquark "Pc"

≻Summary

Earlier study in 1960s

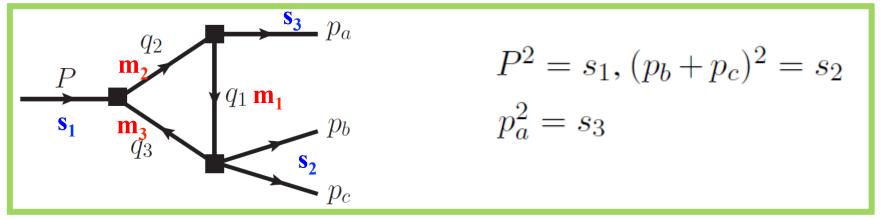
Connections between kinematic singularities of the S-matrix elements and resonance-like peaks: e.g. Peierls mechanism R.F.Peierls, PRL6,641(1961); R.C.Hwa, PhysRev130,2580(1963); C.Goebel,PRL13,143(1964); P.Landshoff&S.Treiman Phys.Rev.127,649(1962);

≻Some disadvantages:

- ✓ Few experiments to search for the effects;
- ✓ Low statistics;

.

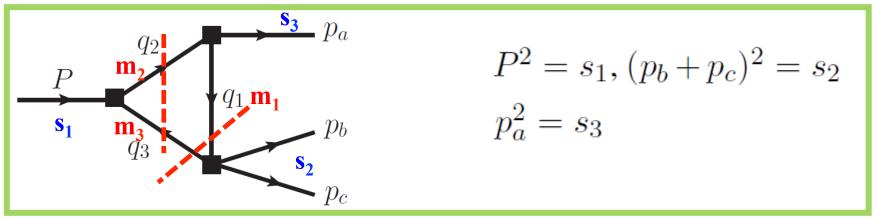
- For the elastic scattering process, singularities of the triangle diagram will be weakened by the corresponding tree diagram without rescattering, according to the so called Schmid theorem
 C.Schmid,Phys.Rev.154,1363(1967);
 - A.V.Anisovich, PLB345, 321(1995)



$$\Gamma_3(s_1, s_2, s_3) = \frac{-1}{16\pi^2} \int_0^1 \int_0^1 \int_0^1 da_1 \, da_2 \, da_3 \, \frac{\delta(1 - a_1 - a_2 - a_3)}{D - i\epsilon}$$
$$D = \sum_{i,j=1}^3 a_i a_j Y_{ij}, \quad Y_{ij} = \frac{1}{2} \left[m_i^2 + m_j^2 - (q_i - q_j)^2 \right]$$

✓ Singularity in the complex space

Necessary conditions (Landau Equation)



✓ Singularity in the complex space The position of the singularity is obtained by solving $det[Y_{ij}] = 0$

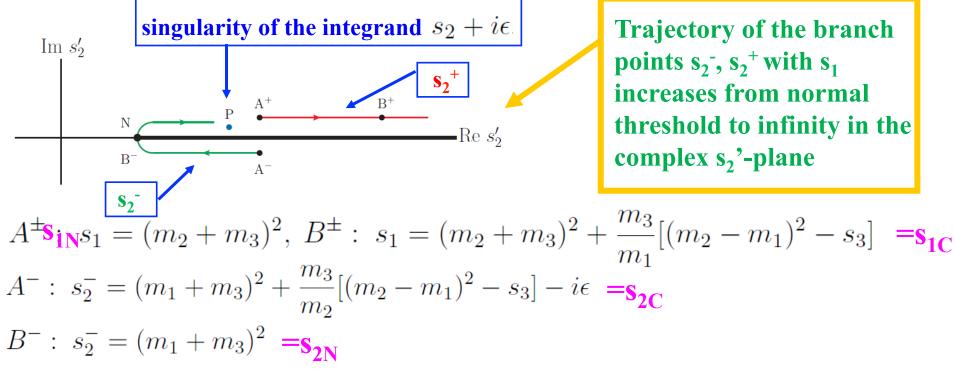
Normal Threshold

$$s_{2}^{\pm} = (m_{1} + m_{3})^{2} + \frac{1}{2m_{2}^{2}}[(m_{1}^{2} + m_{2}^{2} - s_{3})(s_{1} - m_{2}^{2} - m_{3}^{2}) - 4m_{2}^{2}m_{1}m_{3} \\ \pm \lambda^{1/2}(s_{1}, m_{2}^{2}, m_{3}^{2})\lambda^{1/2}(s_{3}, m_{1}^{2}, m_{2}^{2})], \quad \lambda(x, y, z) \equiv (x - y - z)^{2} - 4yz$$
Anomalous Threshold

$$s_{1}^{\pm} = (m_{2} + m_{3})^{2} + \frac{1}{2m_{1}^{2}}[(m_{1}^{2} + m_{2}^{2} - s_{3})(s_{2} - m_{1}^{2} - m_{3}^{2}) - 4m_{1}^{2}m_{2}m_{3} \\ \pm \lambda^{1/2}(s_{2}, m_{1}^{2}, m_{3}^{2})\lambda^{1/2}(s_{3}, m_{1}^{2}, m_{2}^{2})].$$

By means of single dispersion relation, the locations of s_2^{\pm} in the s₂'-plane can be determined by

$$s_2^{\pm}(s_1 + i\epsilon) = s_2(s_1) + i\epsilon \frac{\partial s_2^{\pm}}{\partial s_1}$$



s₂⁻ and P will pinch the integral contour This pinch singularity is the anomalous tri

This pinch singularity is the anomalous triangle singularity (ATS)

By means of single dispersion relation, the locations of s_2^{\pm} in the s₂'-plane can be determined by $s_2^{\pm}(s_1 + i\epsilon) = s_2(s_1) + i\epsilon \frac{\partial s_2^{\pm}}{\partial s_1}$

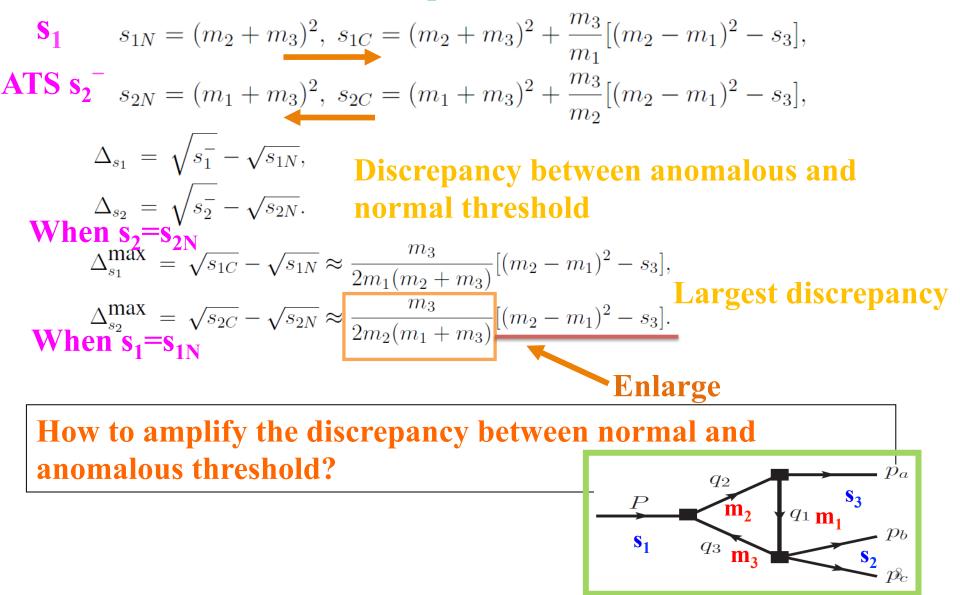
singularity of the integrand $s_2 + i\epsilon$ Trajectory of the branch **"The kinematic conditions for the existence of singularities on the** physical boundary are equivalent to the condition that the relevant Feynman diagram be interpretable as a picture of an energy and momentum-conserving process occurring in spacetime, with all internal particles real, on the mass shell and moving forward in time."

1**C**

Coleman&Norton, Nuovo Cimento 38,5018 (1965)

Fronsdal&Norton, J.Math.Phys. 5, 100(1964)

Normal threshold and critical point



Normal threshold and critical point

$$s_{1N} = (m_2 + m_3)^2, \ s_{1C} = (m_2 + m_3)^2 + \frac{m_3}{m_1} [(m_2 - m_1)^2 - s_3],$$

$$s_{2N} = (m_1 + m_3)^2, \ s_{2C} = (m_1 + m_3)^2 + \frac{m_3}{m_2} [(m_2 - m_1)^2 - s_3],$$

$$\Delta_{s_1} = \sqrt{s_1^-} - \sqrt{s_{1N}},$$

$$\Delta_{s_2} = \sqrt{s_2^-} - \sqrt{s_{2N}}.$$

Discrepancy between anomalous and normal threshold

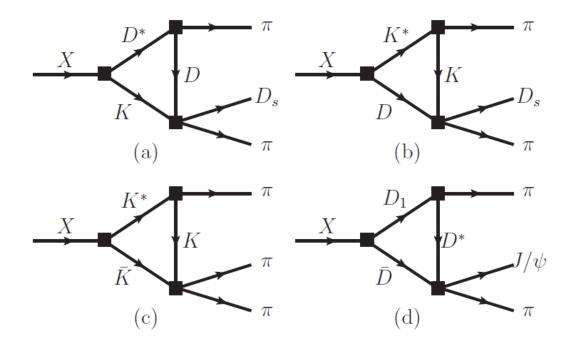
$$\Delta_{s_1}^{\max} = \sqrt{s_{1C}} - \sqrt{s_{1N}} \approx \frac{m_3}{2m_1(m_2 + m_3)} [(m_2 - m_1)^2 - s_3],$$

$$\Delta_{s_2}^{\max} = \sqrt{s_{2C}} - \sqrt{s_{2N}} \approx \frac{m_3}{2m_2(m_1 + m_3)} [(m_2 - m_1)^2 - s_3].$$

Largest discrepancy

How to amplify the discrepancy between normal and anomalous threshold?

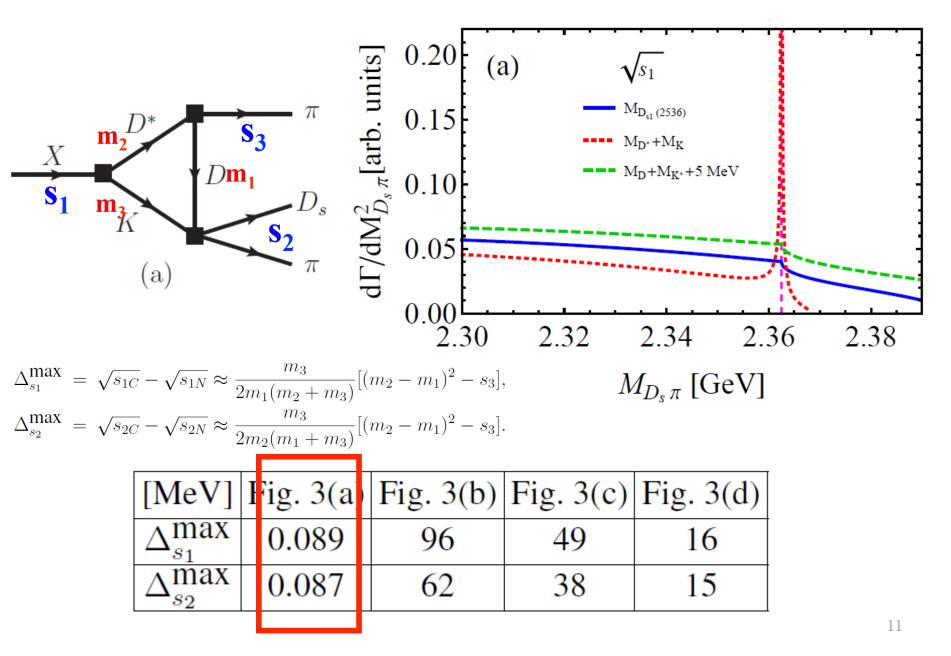
If the discrepancy is larger, maybe it could be used to distinguish the kinematic singularities from genuine particles.

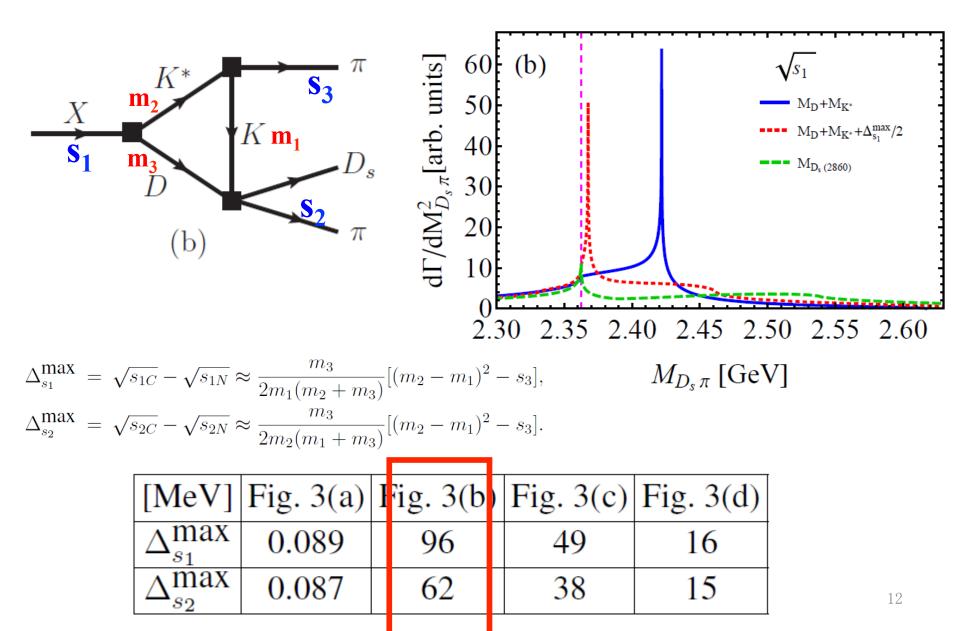


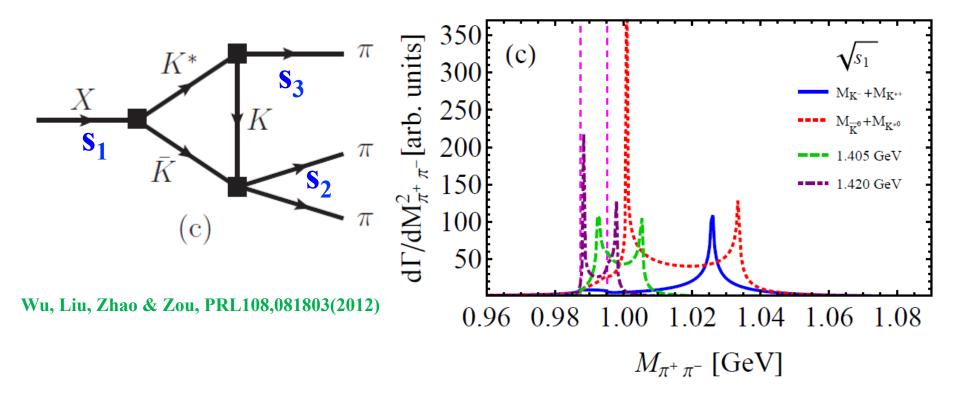
Kinematic region of ATS

	-	Fig. 3(b)	Fig. 3(c)	Fig. 3(d)
$\Delta_{s_1}^{\max}$	0.089	96	49	16
$\Delta_{s_2}^{\max}$	0.087	62	38	15

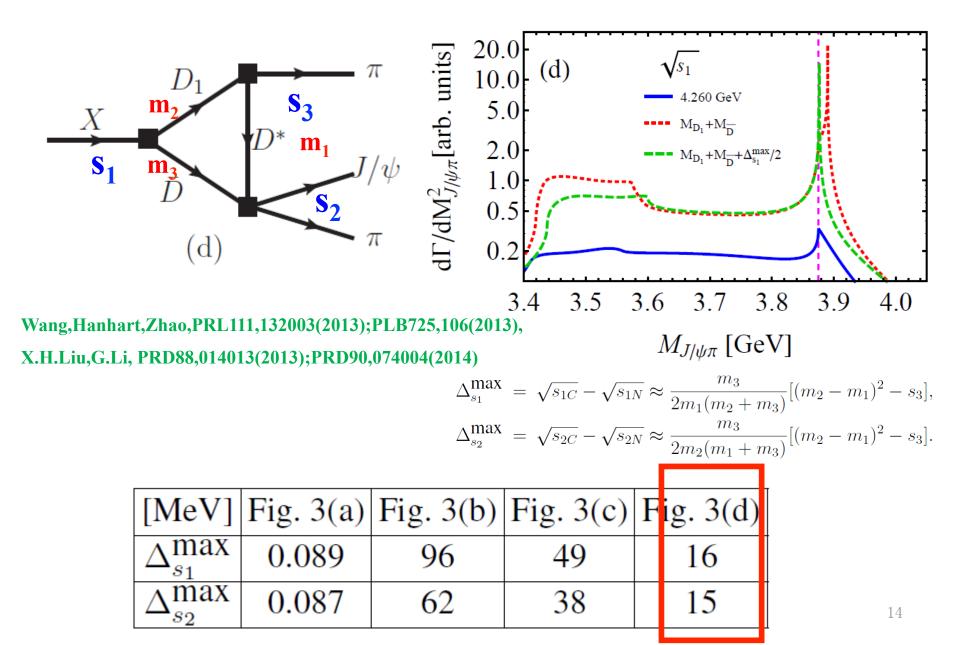
Liu, Oka, Zhao, arXiv:1507.01674

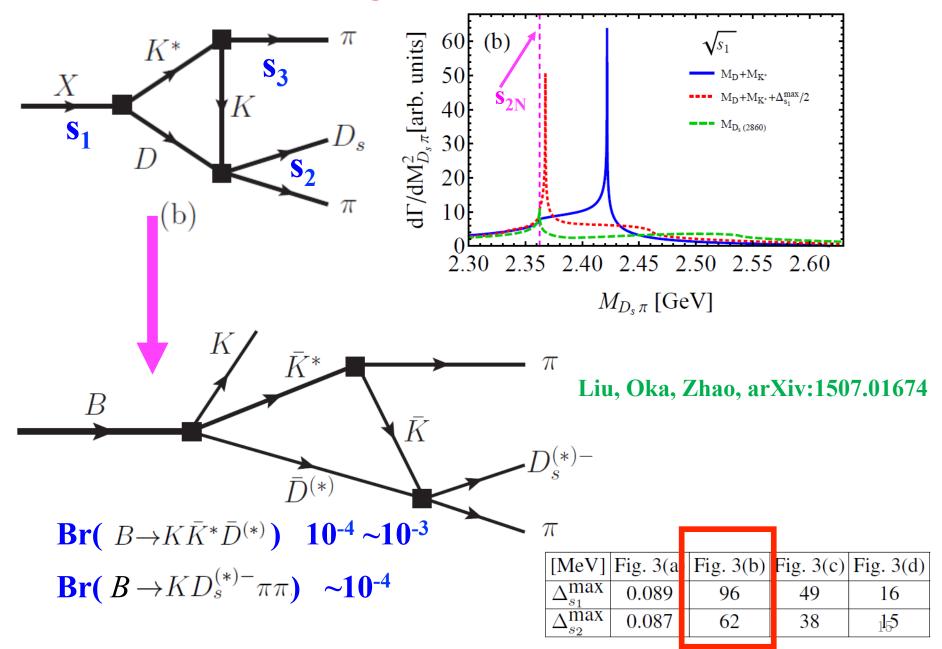


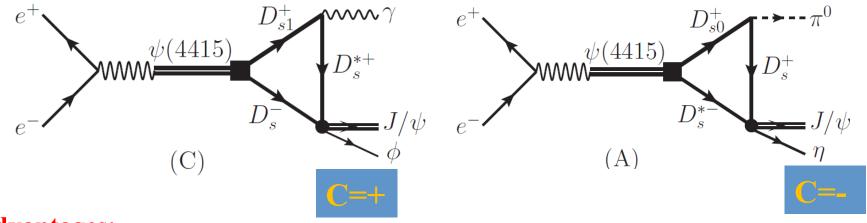




[MeV]	Fig. 3(a)	Fig. 3(b)	F	ig. 3(c)	Fig. 3(d)
$\Delta_{s_1}^{\max}$	0.089	96		49	16
$\Delta_{s_2}^{\max}$	0.087	62		38	15







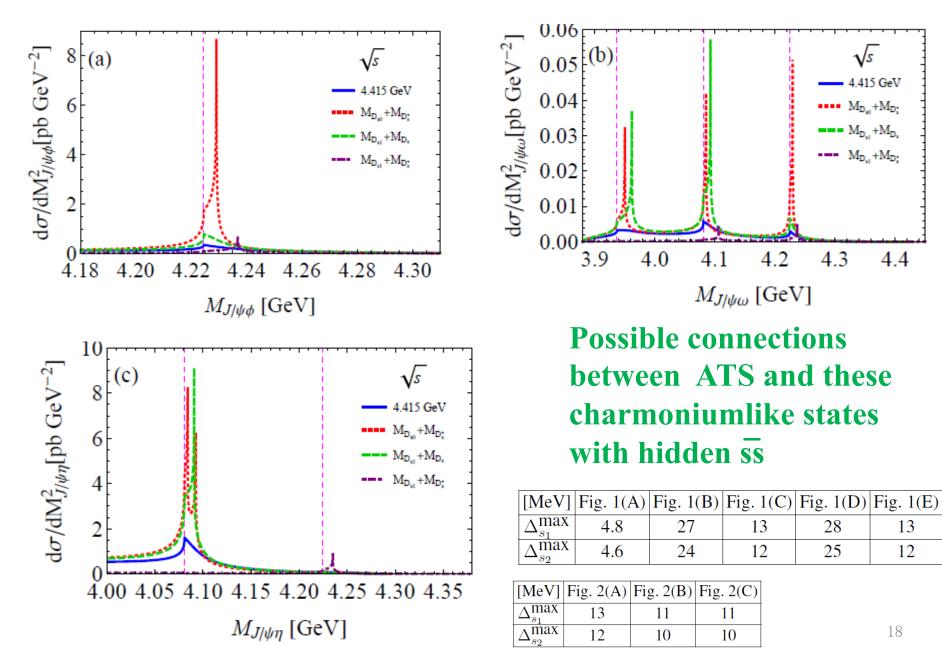
Advantages:

- D_{s0}(2317) and D_{s1}(2436) are very narrow , (Γ <3.8 MeV), influence of ATS will be obvious;
- ✓ Heavy quark spin symmetry is conserved at each vertex, leading order contribution;
- ✓ Thresholds of $D_{s0}(2317) D_s^*$, $D_{s1}(2436) D_s$ are very close to $\psi(4415)$

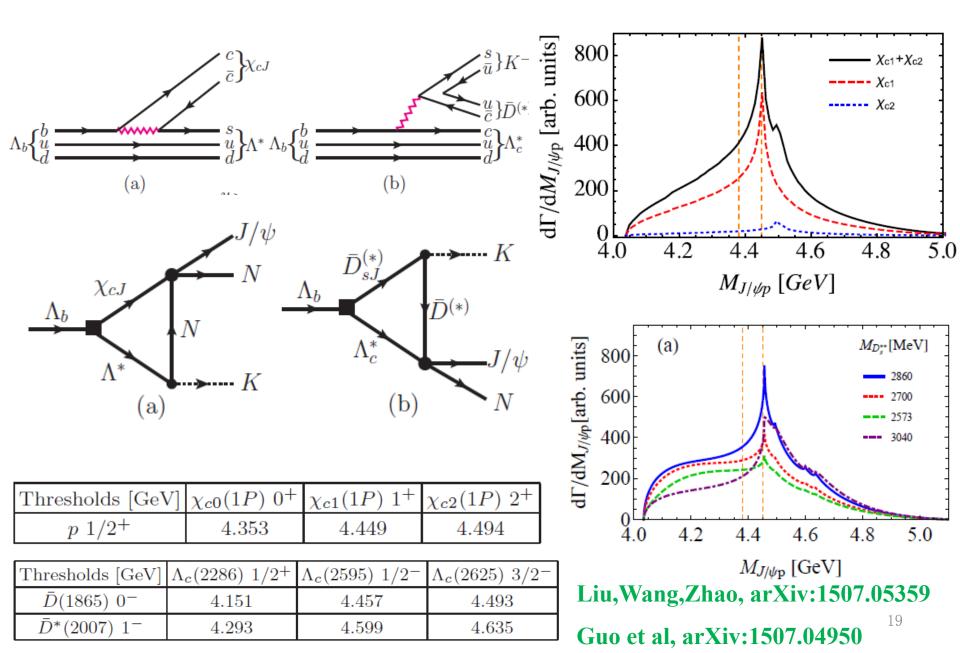
Disadvantage: The discrepancy will not be very large (pure charmed meson loops) higher energy resolution is necessary to observe the discrepancy;

Searching for charmoniumlike states with hidden *SS* Charmoniumlike states with hidden ss

- Y(4140),Y(4274),Y(4350):
- ✓ Observed in J/ $\psi \phi$ invariant mass distribution; very narrow ($\Gamma \sim 20,30$ MeV);
- \checkmark Close to $\mathbf{D}_{s}^{(*)} \mathbf{D}_{s}^{(*)}$, $\mathbf{D}_{s0} \mathbf{D}_{s}^{(*)}$ thresholds;
- ✓ Existence need to be confirmed.
- X(3915):
- Observed in J/ ψω invariant mass distribution; very narrow (Γ ~20 MeV);
- ✓ Some problems if identify it as χ_{c0}(2P): not observed in DDbar; fine splitting M[χ_{c2}(2P)] − M[χ_{c0}(2P)]is too small;
- Close to D_s D_s threshold; the ss component in ω is not very small, may be connected.



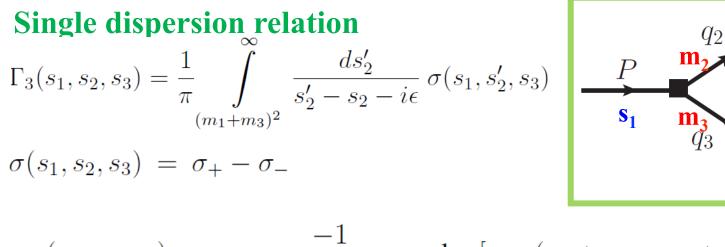
Explanation of pentaquark Pc



Summary

- Kinematic singularities (ATS) of the rescattering amplitude will behave themselves as peaks in the invariant mass distribution, which may imply that non-resonance interpretations for some resonance-like structures (XYZ particles) is possible.
- Criterion to distinguish kinematic singularities from genuine particles: peak positions (or "masses") of the resonance-like peaks will depend on their production modes; we can make this dependence become sensitive to the kinematics in some special processes; For a genuine particle, its measured mass will not be changed too much in different production modes.
- ► It is promising to search for the charmoniumlike structures in the processes $e^+e^- \rightarrow \gamma J/\psi\phi$, $\gamma J/\psi\omega$, $J/\psi\eta\pi^0$ at the center of mass energy around $D_{s0}(2317) D_s^*$, $D_{s1}(2436) D_s$ thresholds.
- One possible mechanism for the production of the pentaquark Pc.

Backup



$$\sigma_{\pm}(s_1, s_2, s_3) = \frac{-1}{16\pi\lambda^{1/2}(s_1, s_2, s_3)} \log[-s_2(s_1 + s_3 - s_2 + m_1^2 + m_3^2 - 2m_2^2) - (s_1 - s_3)(m_1^2 - m_3^2) \pm \lambda^{1/2}(s_1, s_2, s_3)\lambda^{1/2}(s_2, m_1^2, m_3^2)].$$

Work in the kinematical region

$$s_1 \leq (m_2 + m_3)^2, \, s_3 \leq (m_2 - m_1)^2 \qquad 0 < s_2 < (m_1 + m_3)^2$$

By analytic continuation, it can be extended into the over threshold reigon Fronsdal&Norton,J.Math.Phys. 5,100(1964)

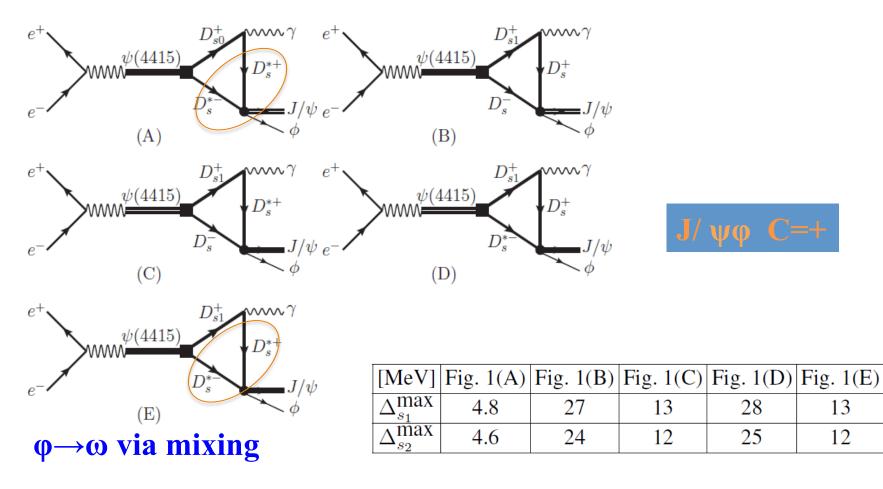
 $s_1 \ge (m_2 + m_3)^2, \ (m_1 + m_3)^2 \le s_2 \le (\sqrt{s_1} - \sqrt{s_3})^2, \ 0 \le \sqrt{s_3} \le m_2 - m_1$

Brach points of the log function s_2^{\pm}

 $\underline{s_3}$ p_a

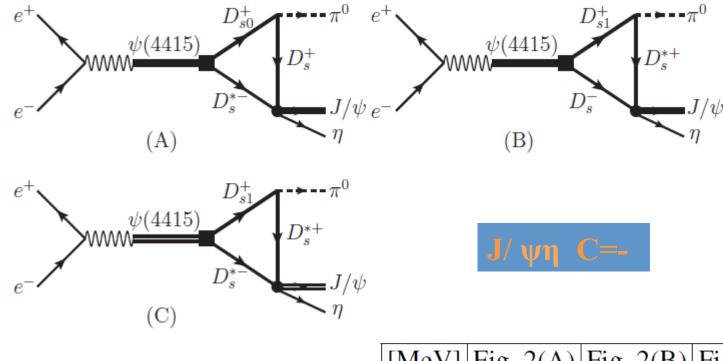
 $q_1 \, \mathbf{m_1}$

Possible connections between ATS and these charmoniumlike states with hidden \overline{ss}



Taking data around the center of mass energy: 4.430~4.435 GeV or 4.572~4.585 GeV²³

Possible connections between ATS and these charmoniumlike states with hidden \overline{ss}



[MeV]	Fig. 2(A)	Fig. 2(B)	Fig. 2(C)
$\Delta_{s_1}^{\max}$	13	11	11
$\Delta_{s_2}^{\max}$	12	10	10

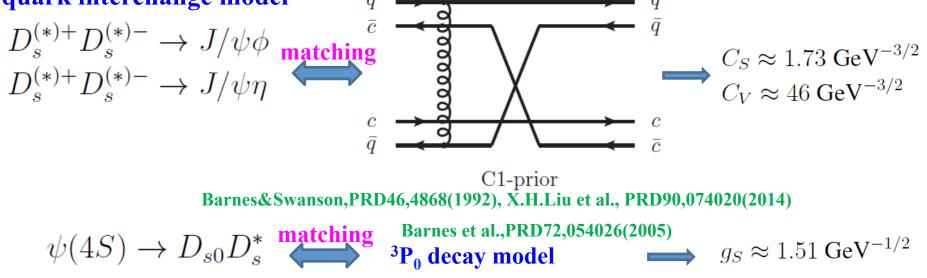
Taking data around the center of mass energy: 4.428~4.443 GeVor 4.572~4.583 GeV

Our Model is constructed in the framework of HHChPT

$$\mathcal{L}_{eff} = g_{S} < J\bar{S}_{2a}\bar{H}_{1a} + J\bar{H}_{2a}\bar{S}_{1a} > +C_{S} < J\bar{H}_{2b}\gamma_{\mu}\gamma_{5}\bar{H}_{1a}\mathcal{A}^{\mu}_{ba} > +C_{V} < J\bar{H}_{2b}\gamma_{\mu}\bar{H}_{1a}\rho^{\mu}_{ba} > + ih < \bar{H}_{1a}S_{1b}\gamma_{\mu}\gamma_{5}\mathcal{A}^{\mu}_{ba} > +\frac{e\tilde{\beta}}{4} < \bar{H}_{1a}S_{1b}\sigma^{\mu\nu}F_{\mu\nu}Q_{ba} > +\cdots$$
(19)

 $\mathcal{L}_{mix} = \theta_{\eta\pi} \eta \pi^0 + \theta_{\omega\phi} \phi \omega$ $\theta_{\eta\pi} \simeq 0.01, \ \theta_{\omega\phi} \simeq 0.065$

Estimate coupling constants: matching the amplitude with that obtained from quark interchange model $q \rightarrow q$



This estimation is model dependent, but will make sense at the order of magnitude.