Photoproduction of typical hypernuclei

Toshio MOTOBA (Osaka E-C)

HYP2015 September 7-12, 2015 Tohoku University, Sendai

CONTENTS

- (0) Properties of hypernuclear photoproduction
- (1) Characteristics utilized in ${}^{4}\text{He}(\gamma, K^{+})$
- (2) p-shell high-resolution (e,e'K⁺) experiments and a new theoretical challenge
- (3) sd- and fp-shell hypernuclei as missing link of high resolution s.p.e.
- (4) Hyperon s.p.e $({}^{208}Pb(\gamma, K^{+})_{\Lambda}{}^{208}AI)$
- (5) Λ -rotation(deformation) coupling
- (6) Summary

(0) **BASICS:** Hyperon **recoil momentum** and the **transition operator itself** determine the reaction characteristics

(1) $\pi+n \rightarrow \Lambda K+$ $\gamma p \rightarrow \Lambda K+$

Momentum transfers are both large and comparable.

*q*_Λ**=350-420** MeV/c at Eγ=1.3 GeV

Microscopic treatment based on the elementary transition amplitudes (π, K) case $\frac{d\sigma(\theta_{\mathrm{L}})}{d\Omega_{\mathrm{L}}} = \gamma \cdot \frac{(2\pi)^4 p_K^2 E_{\pi} E_K E_H}{p_{\pi} \{ p_K(E_H + E_K) - p_{\pi} E_K \cos \theta_{\mathrm{L}} \}} \overline{|T_{if}^{\mathrm{L}}|^2},$ $|T_{if}^{\mathrm{L}}|^2 = \sum_{M} R(if; M_f),$

$$R(if; M_f) = \frac{1}{[J_i]} \sum_{M_i} \left| \langle J_f M_f | \int d^3 r \ \chi^{(-)}(p_K; r)^* \cdot \chi^{(+)}(p_\pi; r) \times \sum_{k=1}^A U_-(k) \ \delta(r - r_k) \cdot \lambda \left[f + ig(\sigma_k \cdot \hat{n}) \right] J_i M_i \rangle \right|^2$$

(2) Elementary amplitude $N \rightarrow Y$ $f = \text{spin-nonflip}, g = \text{spin-flip}, \sigma = \text{baryon spin}$

Lab $d\sigma/d\Omega$ photoproduction case (2Lab)

$$\frac{d\sigma}{d\Omega}\Big|_{2Lab} = \frac{(2\pi)^{4}p^{2}E_{\kappa}E_{r}E_{A}}{k\{p(E_{A}+E_{\kappa})-kE_{\kappa}\cos\theta_{L}\}}\Big|\langle k-p,p|t|k,0\rangle_{L}\Big|^{2}, \qquad (2\cdot4)$$

$$\langle k-p,p|t|k,0\rangle_{L} = a_{1}(\sigma\cdot\epsilon) + a_{2}(\sigma\cdot\hat{k})(\hat{p}\cdot\epsilon) + a_{3}(\sigma\cdot\hat{p})(\hat{p}\cdot\epsilon) + a_{4}\{(\hat{k}\times\hat{p})\cdot\epsilon\}. \qquad (2\cdot5)$$

$$\langle k-p,p|t|k,0\rangle_{L} = \epsilon_{0}(f_{0}+g_{0}\sigma_{0}) + \epsilon_{x}(g_{1}\sigma_{1}+g_{-1}\sigma_{-1}) \qquad (2\cdot11)$$
with definitions of the coefficients:
$$f_{0} = a_{4}\sin\theta_{L}, \qquad (\gamma,K+) \text{ Case}$$

$$g_{\pm 1} = \frac{1}{\sqrt{2}}\{\mp(a_{1}+a_{3}\sin^{2}\theta_{L}) - i\sin\theta_{L}(a_{2}+a_{3}\cos\theta_{L})\}. \qquad (2\cdot12)$$

Elementary amplitudes (complex and p-dependent, *θ*-dependent)

Kaon photoproduction amplitudes

Three spin-flip terms are all large in Kaon photoproduction (1) Application to the lightest closed-shell target ⁴He
 (A proposal from theory side)

Unique role of (e,e'K⁺) or (γ ,K⁺) reaction: to excite ${}^{4}{}_{\Lambda}$ H(1+) state preferentially by making use of the spin-flip dominant nature. (An important issue is to determine 1+ energy position (update) for the study of CSB effect in Λ -N interaction.)

$^{4}\text{He}(\text{K}^{-},\pi^{-})$ vs. $^{4}\text{He}(\gamma,\text{K}^{+})$

(A reaction theoretical view)

1⁺ gets minor X-S but excited anyway, then (K, $\pi\gamma$) coincidence method successful. \rightarrow Tamura's talk X-S(1+) is predominantly Larger than X-S(0+)

E(1+) peak energy will be determined by ${}^{4}\text{He}(e, e'K+)$

(2) JLab (e,e'K+) experiments opened a new stage of hypernuclear reaction spectroscopy

- Success of JLab experiments (Hall A & C) on p-shell targets ---- high E resolution ~540keV
- Suggesting new theoretical aspects

The most typical one: 12C(e,e'K+) Tang et al. PRC 90(2014)

FIG. 10. (Color online) Spectroscopy of ${}^{12}_{\Lambda}B$ from the E05-115 and E01-011 experiments. The area below the black line is the accidental background.

Theor. prediction vs. (e,e'K⁺) experiments

N.P. A804 (2008) 116. Γ=0.67keV

DWIA calculation

14

Nijmegen B-B interaction model improved by taking account of hypernuclear reaction data+ γ

Providing discrimination of several versions of meson theoretical Y-N interaction models

EXP. X-S and DWIA estimates are in good correspondence

12C(γ ,K+) Cross sec. calculated in DWIA at E_ γ = 1.5GeV, θ _K(Lab)=7deg

(Relative strengths with respect to the ground-state peak are also shown for reference)

Peak	J_(j)	Ex (MeV)	Ex (MeV)	EXP	EXP	Theory	S6B	Theory	SLA	Relative XS w.r.t. GS=100(*)								
		NSC97f	DJM	Ex	E_Lam	[nb/sr]	(sum)	[nb/sr]	(sum)		S6B		SLA		Kmaid		RpR	
	1(1)	0.000	0.00	0.00	-11,508	10.54		21.04		14.3	(Sum)	21.0	(Sum)					
#1	2-(1)	0.186	0,12	0.17	-11,340	63.05	73.5	89.33	100.37	85.7	100(*)	89.0	100(*)					
#2	1(2)	2.398	2.59	3.10	-8,390	18.96	24,1	48.44	56.10	25.8	32.8	48.3	55.9					
	0-(1)	3.062	2.60			5.18		7.66		7.0		7.6						
	2(2)	5.022	5.02			4,90		6.96		6.7		6.9						
	3(1)	5,411				(-)		(-)				0.0						
	4(1)	6.228				(-)		(-)				0.0						
#3	2-(3)	6.267	5.64	6.04	-5,488	8.34	15.5	11.84	23.82	11.3	21,1	11.8	23.7					
	3-(2)	6.356				(-)		(-)				0.0						
	1 - (3)	6.389	5.72			2.29		5.02		3.1		5.0						
	2+_(1)	11.000	10.29			1.34	6.45	1.33	9.49	1.8	8.8	1.3	9.5					
#5	1+_(1)	11.120	10.34	10.22	-1.220	5.11		8.16		6.9		8,1						
#6	3+_(1)	11.081	11.01	10.98	-0.524	57.14	81.1	77.56	130.73	77.7	110.3	77.3	130.3					
	2+_(2)	11.610	10.93			23.95		53,17		32.6		53.0						
	0+_(1)	11.860	11.86			0.18		0.16		0,2		0.2						
	1+(2)	12.129	12.13			7.03		6.08		9,6		6.1						
#8	2+(3)	12.784	12.80	12.49	1.047	9.12	20.6	19,96	29.95	12.4	28.0	19.9	29.8					
	1+(3)	13,176	12.91			4,22		3.74		5.7		3.7						
	0+(2)	13,772	13.77			0.01		0.01		0.0		0,0						

There are opposite parity excited states at low energy E<10MeV. (Many theoretical attempts)

Our new theoretical challenge is to take both parity states into account. $major shell mixing mediated by \Lambda$ that is a new concept seen only in hypernucleus (we have called it as parity mixing)

Results of parity mixing calculation (preliminary)

20

Components connected via (γ ,K⁺)

proton is converted $-- \rightarrow \Lambda$ in s or p orbits

(So far only green arrows are taken into account.)

$${}^{12}{}_{\Lambda}B(J_{H}^{-}) = \{([s^{4}]p^{7}; J_{c}^{-})_{0} \times \Lambda_{s}\}^{(0)} + \{([s^{4}]p^{6}(sd)^{1}; J_{c}^{+})_{1} \times \Lambda_{p}\}^{(2)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{p}\}^{(2)}$$

$${}^{12}C(0^{+})_{0+2h_{0}} = |[s^{4}]p^{8} > + |[s^{4}]p^{7}(fp)^{1} > + |[s^{4}]p^{6}(sd)^{2} > + |[s^{3}]p^{8}(sd)^{1} > + |[s^{2}]p^{10} >$$

$${}^{12}{}_{\Lambda}B(J_{H}^{+}) = \{([s^{4}]p^{7}; J_{c}^{-})_{0} \times \Lambda_{p}\}^{(1)} + \{([s^{4}]p^{6}(sd)^{1}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)}$$

Problems:

What kind of effective interactions should be used in describing those WF in the extended model space. 21

(3) Medium-heavy nuclear targets

A typical example of medium-heavy target :²⁸Si: $(d_{5/2})^6$ and $(sd)^{6P}(sd)^{6N}$

to show characteristics of the (γ ,K⁺) reaction with DDHF w.f. Spin-orbit splitting: consistent with ${}_{\Lambda}{}^{7}$ Li, 9 Be, 13 C, 89 Y

These characteristic merits of the $\gamma p \rightarrow \Lambda K^+$ process(ability to excite high-spin unnatural-parity states) should be realized better in heavier systems involving large $j_{\rm D}$ and large j_{Λ}

(e,e'K⁺) $d^3\sigma/dE_e d\Omega_e d\Omega_K = \Gamma \times d\sigma/d\Omega_K$ Γ : virtual photon flux (kinematics)

Hereafter we discuss $d\sigma/d\Omega_{K}$ for $^{A}Z(\gamma,K+)_{\Lambda}^{A}Z'_{24}$

Theor. x-section for $(d_{5/2})^6 (\gamma, K^+)[j_h-j_\Lambda]J$

25

Proton pickup from ²⁸Si(0⁺): $(sd)^6 = (d_{5/2})^{4.1}(1s_{1/2})^{0.9}(d_{3/2})^{1.0}$

Peaks can be classified by the characters

²⁸Si(e,e'K⁺)²⁸ AI – First Spectroscopy of ²⁸ AI

Exp. data: Nakamura(HYP2015), **Seems promising,** (waiting for finalization of exp. analysis)

⁵²Cr (*j*, dominant target case) typical unnatural-parity high-spin states

${}^{52}Cr(e,e'K^+) {}^{52}_{\Lambda}V$ in analysis Nakamura, priv. commun. (HYP2015)

peak	Β _Λ (MeV)
#1	-21.4
#2	-12.1
#3	-0.4
#4	+10.9

E01-115

⁴⁰Ca (LS-closed shell case): high-spin states with natural-parity (2+,3-,4+)

31

Well-separated series of peaks due to large q and spin-flip dominance: $j_{>}=l+1/2, j_{<}=l-1/2$

 $[(nlj)_{p}^{-1} (nlj)^{\Lambda}]_{J} \text{ a series of pronounced peaks}$ $jj \text{- closed target} : (2^{8}\text{Si}, 5^{2}\text{Cr})$ $[j_{>}^{-1} j_{>}^{\Lambda}]_{J} J = j_{>} + j_{>}^{\Lambda} = I_{p} + I_{\Lambda} + 1 = L_{\max} + 1 \text{ (unnatural parity)}$ $[j_{>}^{-1} j_{<}^{\Lambda}]_{J} J = j_{>} + j_{<}^{\Lambda} = I_{p} + I_{\Lambda} = L_{\max} \text{ (natural parity)}$

LS-closed target : (40Ca) $[j_{<}^{-1} j_{>}^{\Lambda}]_{J} \quad J = j_{<} + j_{>}^{\Lambda} = l_{p} + l_{\Lambda} = L_{max}$ (natural parity)

(4) One of the major objects is to get systematics of Λ s.p.e. Taken from: Millener-Dover-Gal, PRC18 (1988)

FIG. 1. The data on binding energies (B_{Λ}) of Λ sing

Woods-Saxon pot. D=28MeV r_0= 1.128+0.439A^(-2/3)

FIG. 5. Same as Fig. 4 but for the potential in Table III with $\rho^{4/3}$ density dependence.

Skyrme HF with $\rho^{(4/3)}_{33}$ Density dependent

Single-particle energies of Λ G-matrix(ESC08c) results vs. experiments

(Y. Yamamoto et al.: PTP. S.185 (2010) 72 and priv. commun.)

Y. Yamamoto, T. Motoba and Th. A. Rijken

High resolution exp. data over wide A are necessary.

sd, fp-shell and heavier data are quite Important to extract the Λ behavior in nuclear matter.

We have an opportunity to observe a series of Lambda orbits ?

(5) Another interesting topics related to medium-heavy hypernuclear structure includes <u>*A*-rotation(deformation) coupling</u>

• Refer to Talks by Isaka and Hagino.

Why the strong coupling is realized between p-state Λ and $\alpha+\alpha$ core ?

Schematic consideration assuming the SU(3) maximum configuration for the nuclear g.s. rotational states:

 $(\lambda\mu)=(40) \ \ell=0,2,4^+ \text{ for }{}^8\text{Be}$ $(\lambda\mu)=(04) \ \ell=0,2,4^+ \text{ for }{}^{12}\text{C}$ $(\lambda\mu)=(80) \ \ell=0,2,4,6,8^+ \text{ for }{}^{2}\text{C}$

Possible test of $\gamma p \rightarrow \Lambda K$ ampl.

Comparison of isobar and Regge-plus-resonance models

- H2: isobar model with hadronic f.f.; fit to CLAS data; nucleon resonances: $S_{11}(1650)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1895)$; hyperon resonances: $S_{01}(1670)$, $S_{01}(1800)$
- RPR: fit to CLAS and LEPS data (cross sections) with resonances $S_{11}(1535) S_{11}(1650)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1895)$; multidipole-Gauss hadronic f.f.;

motivated by RPR-2011B [Lesley De Cruz, PhD thesis, Ghent University, 2011]

RPR-2007: Corthals et al, 2007, version RPR-2+D13

P.B., M. Sotona, Nucl. Phys. A 835 (2010) 246

(From P. Bydzovsky)

Summary and outlook

- Based on the (γ,K+) reaction characteristics, typical physics contents are discussed by showing theoretical production X-sections.
- Among others the DWIA predictions for p-shell, ²⁸_AAl and ⁵²Cr are well compared with the recent expt. ⁴⁰Ca and ²⁰⁸Pb are also demonstrated.
- 3) In addition to the Λ s.p.e., dynamical coupling

of Λ with collective nuclear motion is emphasized.

 Remarks: For efforts to improve the theoretical elementary amplitudes, refer to Skoupil, Bydzovsky, Mart.